Try a new search

Format these results:

Searched for:

person:sadowm01

Total Results:

161


Predicting Short-term MCI-to-AD Progression Using Imaging, CSF, Genetic Factors, Cognitive Resilience, and Demographics

Varatharajah, Yogatheesan; Ramanan, Vijay K; Iyer, Ravishankar; Vemuri, Prashanthi; ,
In the Alzheimer's disease (AD) continuum, the prodromal state of mild cognitive impairment (MCI) precedes AD dementia and identifying MCI individuals at risk of progression is important for clinical management. Our goal was to develop generalizable multivariate models that integrate high-dimensional data (multimodal neuroimaging and cerebrospinal fluid biomarkers, genetic factors, and measures of cognitive resilience) for identification of MCI individuals who progress to AD within 3 years. Our main findings were i) we were able to build generalizable models with clinically relevant accuracy (~93%) for identifying MCI individuals who progress to AD within 3 years; ii) markers of AD pathophysiology (amyloid, tau, neuronal injury) accounted for large shares of the variance in predicting progression; iii) our methodology allowed us to discover that expression of CR1 (complement receptor 1), an AD susceptibility gene involved in immune pathways, uniquely added independent predictive value. This work highlights the value of optimized machine learning approaches for analyzing multimodal patient information for making predictive assessments.
PMCID:6381141
PMID: 30783207
ISSN: 2045-2322
CID: 5864622

Translating Alzheimer's disease-associated polymorphisms into functional candidates: a survey of IGAP genes and SNPs

Katsumata, Yuriko; Nelson, Peter T; Estus, Steven; Fardo, David W; [Sadowski, M]
The International Genomics of Alzheimer's Project (IGAP) is a consortium for characterizing the genetic landscape of Alzheimer's disease (AD). The identified and/or confirmed 19 single-nucleotide polymorphisms (SNPs) associated with AD are located on non-coding DNA regions, and their functional impacts on AD are as yet poorly understood. We evaluated the roles of the IGAP SNPs by integrating data from many resources, based on whether the IGAP SNP was (1) a proxy for a coding SNP or (2) associated with altered mRNA transcript levels. For (1), we confirmed that 12 AD-associated coding common SNPs and five nonsynonymous rare variants are in linkage disequilibrium with the IGAP SNPs. For (2), the IGAP SNPs in CELF1 and MS4A6A were associated with expression of their neighboring genes, MYBPC3 and MS4A6A, respectively, in blood. The IGAP SNP in DSG2 was an expression quantitative trait loci (eQTL) for DLGAP1 and NETO1 in the human frontal cortex. The IGAP SNPs in ABCA7, CD2AP, and CD33 each acted as eQTL for AD-associated genes in brain. Our approach for identifying proxies and examining eQTL highlighted potentially impactful, novel gene regulatory phenomena pertinent to the AD phenotype.
PMCID:6331247
PMID: 30448613
ISSN: 1558-1497
CID: 5134382

Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers

Nho, Kwangsik; Kueider-Paisley, Alexandra; MahmoudianDehkordi, Siamak; Arnold, Matthias; Risacher, Shannon L; Louie, Gregory; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Kastenmüller, Gabi; Jia, Wei; Xie, Guoxiang; Ahmad, Shahzad; Hankemeier, Thomas; van Duijn, Cornelia M; Trojanowski, John Q; Shaw, Leslie M; Weiner, Michael W; Doraiswamy, P Murali; Saykin, Andrew J; Kaddurah-Daouk, Rima; [Sadowski, M]
INTRODUCTION:Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-β deposition. METHOD:F]FDG PET). RESULTS:("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05). DISCUSSION:This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.
PMCID:6454538
PMID: 30337152
ISSN: 1552-5279
CID: 5134352

Functional signature of conversion of patients with mild cognitive impairment

Delli Pizzi, Stefano; Punzi, Miriam; Sensi, Stefano L; [Sadowski, M]
The entorhinal-hippocampal circuit is a strategic hub for cognition and the first site affected by Alzheimer's disease (AD). We investigated magnetic resonance imaging patterns of brain atrophy and functional connectivity in an Alzheimer's Disease Neuroimaging Initiative data set that included healthy controls, mild cognitive impairment (MCI), and patients with AD. Individuals with MCI were clinically evaluated 24Â months after the first magnetic resonance imaging scan, and the cohort subdivided into sets of individuals who either did or did not convert to AD. The MCI group was also divided into patients who did show or not the presence of AD-related alterations in the cerebrospinal fluid. Patients with AD exhibited the collapse of the long-range hippocampal/entorhinal connectivity, pronounced cortical/subcortical atrophy, and a dramatic decline in cognitive performances. Patients with MCI who converted to AD or patients with MCI who showed the presence of AD-related alterations in the cerebrospinal fluid showed memory deficits, entorhinal/hippocampal hypoconnectivity, and concomitant atrophy of the two regions. Patients with MCI who did not convert to AD or patients with MCI who did not show the presence of AD-related alterations in the cerebrospinal fluid had no atrophy but showed hippocampal/entorhinal hyperconnectivity with selected neocortical/subcortical regions involved in memory processing and brain metastability. This hyperconnectivity may represent a compensatory strategy against the progression of cognitive impairment.
PMID: 30408719
ISSN: 1558-1497
CID: 5134402

Robust Motion Regression of Resting-State Data Using a Convolutional Neural Network Model

Yang, Zhengshi; Zhuang, Xiaowei; Sreenivasan, Karthik; Mishra, Virendra; Cordes, Dietmar; [Sadowski, M]
Resting-state functional magnetic resonance imaging (rs-fMRI) based on the blood-oxygen-level-dependent (BOLD) signal has been widely used in healthy individuals and patients to investigate brain functions when the subjects are in a resting or task-negative state. Head motion considerably confounds the interpretation of rs-fMRI data. Nuisance regression is commonly used to reduce motion-related artifacts with six motion parameters estimated from rigid-body realignment as regressors. To further compensate for the effect of head movement, the first-order temporal derivatives of motion parameters and squared motion parameters were proposed previously as possible motion regressors. However, these additional regressors may not be sufficient to model the impact of head motion because of the complexity of motion artifacts. In addition, while using more motion-related regressors could explain more variance in the data, the neural signal may also be removed with increasing number of motion regressors. To better model how in-scanner motion affects rs-fMRI data, a robust and automated convolutional neural network (CNN) model is developed in this study to obtain optimal motion regressors. The CNN network consists of two temporal convolutional layers and the output from the network are the derived motion regressors used in the following nuisance regression. The temporal convolutional layer in the network can non-parametrically model the prolonged effect of head motion. The set of regressors derived from the neural network is compared with the same number of regressors used in a traditional nuisance regression approach. It is demonstrated that the CNN-derived regressors can more effectively reduce motion-related artifacts.
PMCID:6482337
PMID: 31057348
ISSN: 1662-4548
CID: 5134372

The Relationship Between Hippocampal Volumes and Delayed Recall Is Modified by APOE ε4 in Mild Cognitive Impairment

Wang, Xiwu; Zhou, Wenjun; Ye, Teng; Lin, Xiaodong; Zhang, Jie; [Sadowski, M]
PMCID:6399520
PMID: 30863302
ISSN: 1663-4365
CID: 5134362

The Influence of Cerebrospinal Fluid Abnormalities and APOE 4 on PHF-Tau Protein: Evidence From Voxel Analysis and Graph Theory

Li, Yuan; Yao, Zhijun; Yu, Yue; Fu, Yu; Zou, Ying; Hu, Bin; ,
Mild cognitive impairment (MCI) is a transitional state between the cognitive changes in normal aging and Alzheimer's disease (AD), which induces abnormalities in specific brain regions. Previous studies showed that paired helical filaments Tau (PHF-Tau) protein is a potential pathogenic protein which may cause abnormal brain function and structure in MCI and AD patients. However, the understanding of the PHF-Tau protein network in MCI patients is limited. In this study, 225 subjects with PHF-Tau Positron Emission Tomography (PET) images were divided into four groups based on whether they carried Apolipoprotein E ε4 (APOE 4) or abnormal cerebrospinal fluid Total-Tau (CSF T-Tau). They are two important pathogenic factors that might cause cognitive function impairment. The four groups were: individuals harboring CSF T-Tau pathology but no APOE 4 (APOE 4-T+); APOE 4 carriers with normal CSF T-Tau (APOE 4+T-); APOE 4 carriers with abnormal CSF T-Tau (APOE 4+T+); and APOE 4 noncarriers with abnormal CSF T-Tau (APOE 4-T-). We explored the topological organization of PHF-Tau networks in these four groups and calculated five kinds of network properties: clustering coefficient, shortest path length, Q value of modularity, nodal centrality and degree. Our findings showed that compared with APOE 4-T- group, the other three groups showed different alterations in the clustering coefficient, shortest path length, Q value of modularity, nodal centrality and degree. Simultaneously, voxel-level analysis was conducted and the results showed that compared with APOE 4-T- group, the other three groups were found increased PHF-Tau distribution in some brain regions. For APOE 4+T+ group, positive correlation was found between the value of PHF-Tau distribution in altered regions and Functional Assessment Questionnaire (FAQ) score. Our results indicated that the effects of APOE 4 and abnormal CSF T-Tau may induce abnormalities of PHF-Tau protein and APOE 4 has a greater impact on PHF-Tau than abnormal CSF T-Tau. Our results may be particularly helpful in uncovering the pathophysiology underlying the cognitive dysfunction in MCI patients.
PMCID:6694441
PMID: 31440157
ISSN: 1663-4365
CID: 5864652

Performing Sparse Regularization and Dimension Reduction Simultaneously in Multimodal Data Fusion

Yang, Zhengshi; Zhuang, Xiaowei; Bird, Christopher; Sreenivasan, Karthik; Mishra, Virendra; Banks, Sarah; Cordes, Dietmar; ,
Collecting multiple modalities of neuroimaging data on the same subject is increasingly becoming the norm in clinical practice and research. Fusing multiple modalities to find related patterns is a challenge in neuroimaging analysis. Canonical correlation analysis (CCA) is commonly used as a symmetric data fusion technique to find related patterns among multiple modalities. In CCA-based data fusion, principal component analysis (PCA) is frequently applied as a preprocessing step to reduce data dimension followed by CCA on dimension-reduced data. PCA, however, does not differentiate between informative voxels from non-informative voxels in the dimension reduction step. Sparse PCA (sPCA) extends traditional PCA by adding sparse regularization that assigns zero weights to non-informative voxels. In this study, sPCA is incorporated into CCA-based fusion analysis and applied on neuroimaging data. A cross-validation method is developed and validated to optimize the parameters in sPCA. Different simulations are carried out to evaluate the improvement by introducing sparsity constraint to PCA. Four fusion methods including sPCA+CCA, PCA+CCA, parallel ICA and sparse CCA were applied on structural and functional magnetic resonance imaging data of mild cognitive impairment subjects and normal controls. Our results indicate that sPCA significantly can reduce the impact of non-informative voxels and lead to improved statistical power in uncovering disease-related patterns by a fusion analysis.
PMCID:6618346
PMID: 31333396
ISSN: 1662-4548
CID: 5864642

Two Year Outcomes, Cognitive and Behavioral Markers of Decline in Healthy, Cognitively Normal Older Persons with Global Deterioration Scale Stage 2 (Subjective Cognitive Decline with Impairment)

Reisberg, Barry; Torossian, Carol; Shulman, Melanie B; Monteiro, Isabel; Boksay, Istvan; Golomb, James; Guillo Benarous, Francoise; Ulysse, Anaztasia; Oo, Thet; Vedvyas, Alok; Rao, Julia A; Marsh, Karyn; Kluger, Alan; Sangha, Jaspreet; Hassan, Mudasar; Alshalabi, Munther; Arain, Fauzia; Shaikh, Naveed; Buj, Maja; Kenowsky, Sunnie; Masurkar, Arjun V; Rabin, Laura; Noroozian, Maryam; Sánchez-Saudinós, Mar A Belén; Blesa, Rafael; Auer, Stefanie; Zhang, Yian; de Leon, Mony; Sadowski, Martin; Wisniewski, Thomas; Gauthier, Serge; Shao, Yongzhao
BACKGROUND:Little is known with respect to behavioral markers of subjective cognitive decline (SCD), a condition initially described in association with Global Deterioration Scale (GDS) stage 2. OBJECTIVE:Two-year interval behavioral markers were investigated herein. METHODS:Subjects from a published 7-year outcome study of GDS stage 2 subjects were selected. This study had demonstrated a hazard ratio of 4.5 for progression of GDS stage 2, in comparison with GDS stage 1 (no subjective or objective cognitive decline) subjects, after controlling for demographic and temporal variables. Because GDS 2 subjects have previously demonstrated impairment in comparison with healthy persons free of complaints, we herein suggest the terminology "SCD(I)" for these persons. 98 SCD(I) persons, 63 women and 35 men, mean baseline age, 67.12±8.75 years, with a mean educational background of 15.55±2.60 years, and mean baseline MMSE scores of 28.9±1.24 were followed for 2.13±0.30 years. RESULTS:Observed annual decline on the GDS was 6.701% per annum, very close to a 1986 published estimate. At follow up, the MMSE, and 7 of 8 psychometric tests did not decline significantly. Of 21 Hamilton Depression Scale items, 2 improved and the remainder were unchanged. Anxieties declined from multiple perspectives. The Brief Cognitive Rating Scale (BCRS) declined significantly (p < 0.001), with component declines in Remote memory (p < 0.01), and Functioning/self-care (p = 0.01). CONCLUSION/CONCLUSIONS:SCD(I) persons decline at an annual rate of approximately 6.7% /year from several recent studies. The BCRS assessments and the Digit Symbol Substitution Test can be sensitive measures for future studies of progression mitigation.
PMID: 30689585
ISSN: 1875-8908
CID: 3626022

Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

Zhao, Qian; Liu, Min; Ha, Lingxia; Zhou, Yun; ,
Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake. Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed. Results: 18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions. Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification.
PMCID:6530456
PMID: 31156534
ISSN: 1664-2295
CID: 5864632