Try a new search

Format these results:

Searched for:

person:ueberb01 or jda332 or dhabaa01 or sn947 or poncej02

Total Results:

164


Characterization of guided entry of tail-anchored proteins 3 homologues in Mycobacterium tuberculosis

Hu, Kuan; Jordan, Ashley T; Zhang, Susan; Dhabaria, Avantika; Kovach, Amanda; Rangel, Margarita; Ueberheide, Beatrix; Li, Huilin; Darwin, K Heran
We characterized an operon in Mycobacterium tuberculosis (M. tuberculosis), Rv3679-Rv3680, in which each open reading frame is annotated to encode "anion transporter ATPase" homologues. Using structure prediction modeling, we found Rv3679 and Rv3680 more closely resemble the guided-entry of tail-anchored proteins 3 (Get3) chaperone in eukaryotes. Get3 delivers proteins into the membranes of the endoplasmic reticulum and is essential for the normal growth and physiology of some eukaryotes. We sought to characterize the structures of Rv3679 and Rv3680 and test if they have a role in M. tuberculosis pathogenesis. We solved crystal structures of nucleotide-bound Rv3679-Rv3680 complex at 2.5-3.2 Ã… and show while it has some similarities to Get3 and ArsA, the complex has notable differences, including that these proteins are unlikely to be involved in anion transport. Deletion of both genes did not reveal any conspicuous defects in growth in vitro or in mice. Collectively, we identified a new class of proteins in bacteria with similarity to Get3 complexes, the functions of which remain to be determined.ImportanceNumerous bacterial species encode proteins predicted to have similarity with Get3 and ArsA-type anion transporters. Our studies provide evidence that these proteins, which we named BagA and BagB, are unlikely to be involved in anion transport. In addition, BagA and BagB are conserved in all mycobacterial species, including the causative agent of leprosy, which has a highly decayed genome. This conservation suggests BagAB constitutes a part of the core mycobacterial genome and is needed for some yet-to-be-determined part of the life cycle of these organisms.
PMID: 31036728
ISSN: 1098-5530
CID: 3854522

Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1

Lignitto, Luca; LeBoeuf, Sarah E; Homer, Harrison; Jiang, Shaowen; Askenazi, Manor; Karakousi, Triantafyllia R; Pass, Harvey I; Bhutkar, Arjun J; Tsirigos, Aristotelis; Ueberheide, Beatrix; Sayin, Volkan I; Papagiannakopoulos, Thales; Pagano, Michele
Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.
PMID: 31257023
ISSN: 1097-4172
CID: 3967782

The purine biosynthesis regulator PurR moonlights as a virulence regulator in Staphylococcus aureus

Sause, William E; Balasubramanian, Divya; Irnov, Irnov; Copin, Richard; Sullivan, Mitchell J; Sommerfield, Alexis; Chan, Rita; Dhabaria, Avantika; Askenazi, Manor; Ueberheide, Beatrix; Shopsin, Bo; van Bakel, Harm; Torres, Victor J
The pathogen Staphylococcus aureus colonizes and infects a variety of different sites within the human body. To adapt to these different environments, S. aureus relies on a complex and finely tuned regulatory network. While some of these networks have been well-elucidated, the functions of more than 50% of the transcriptional regulators in S. aureus remain unexplored. Here, we assess the contribution of the LacI family of metabolic regulators to staphylococcal virulence. We found that inactivating the purine biosynthesis regulator purR resulted in a strain that was acutely virulent in bloodstream infection models in mice and in ex vivo models using primary human neutrophils. Remarkably, these enhanced pathogenic traits are independent of purine biosynthesis, as the purR mutant was still highly virulent in the presence of mutations that disrupt PurR's canonical role. Through the use of transcriptomics coupled with proteomics, we revealed that a number of virulence factors are differentially regulated in the absence of purR Indeed, we demonstrate that PurR directly binds to the promoters of genes encoding virulence factors and to master regulators of virulence. These results guided us into further ex vivo and in vivo studies, where we discovered that S. aureus toxins drive the death of human phagocytes and mice, whereas the surface adhesin FnbA contributes to the increased bacterial burden observed in the purR mutant. Thus, S. aureus repurposes a metabolic regulator to directly control the expression of virulence factors, and by doing so, tempers its pathogenesis.
PMID: 31217288
ISSN: 1091-6490
CID: 3939222

Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom

Wiezel, Gisele A; Rustiguel, Joane K; Morgenstern, David; Zoccal, Karina F; Faccioli, Lucia H; Nonato, M Cristina; Ueberheide, Beatrix; Arantes, Eliane C
Snake venom L-amino acid oxidases (svLAAOs) are an interesting class of enzymes with important biological activities. Their participation in key metabolic processes, including pathological disorders, suggest that svLAAOs are potential lead compounds in drug discovery. However, their short-term stability defies their applications. This paper describes the stability studies together with functional and structural characterization of the LAAO bordonein-L. It has 498 amino acid residues, one N-glycosylation site and two disulfide bonds, revealed by high-resolution MS/MS. Molecular modeling approach showed its monomer folds into three conserved domains: FAD, substrate and helical domains. Differential scanning fluorimetry showed the enzyme tends to destabilize from neutral to basic pHs and in presence of mono/bivalent ions and it is highly stabilized by acid pHs and its substrates. However, high concentrations of L-amino acids decrease bordonein-L enzyme activity. Dynamic light scattering revealed bordonein-L remains in the dimeric and monodisperse form, so aggregation does not cause the rapidly decrease of enzyme activity. In vitro, the enzyme exhibited cytotoxicity against fibroblast cell line and killed Leishmania amazonensis promastigotes, intensified by substrate addition. Concluding, our results provide biochemistry and biophysical insights to improve LAAOs stability and better approaches to long-term storage. Moreover, our study emphasizes the importance of proper buffers choice mainly in cell-based assays.
PMID: 31078582
ISSN: 1638-6183
CID: 3900952

The Mycobacterium tuberculosis Pup-proteasome system regulates nitrate metabolism through an essential protein quality control pathway

Becker, Samuel H; Jastrab, Jordan B; Dhabaria, Avantika; Chaton, Catherine T; Rush, Jeffrey S; Korotkov, Konstantin V; Ueberheide, Beatrix; Darwin, K Heran
The human pathogen Mycobacterium tuberculosis encodes a proteasome that carries out regulated degradation of bacterial proteins. It has been proposed that the proteasome contributes to nitrogen metabolism in M. tuberculosis, although this hypothesis had not been tested. Upon assessing M. tuberculosis growth in several nitrogen sources, we found that a mutant strain lacking the Mycobacterium proteasomal activator Mpa was unable to use nitrate as a sole nitrogen source due to a specific failure in the pathway of nitrate reduction to ammonium. We found that the robust activity of the nitrite reductase complex NirBD depended on expression of the groEL/groES chaperonin genes, which are regulated by the repressor HrcA. We identified HrcA as a likely proteasome substrate, and propose that the degradation of HrcA is required for the full expression of chaperonin genes. Furthermore, our data suggest that degradation of HrcA, along with numerous other proteasome substrates, is enhanced during growth in nitrate to facilitate the derepression of the chaperonin genes. Importantly, growth in nitrate is an example of a specific condition that reduces the steady-state levels of numerous proteasome substrates in M. tuberculosis.
PMID: 30723150
ISSN: 1091-6490
CID: 3632162

USP7 cooperates with NOTCH1 to drive the oncogenic transcriptional program in T cell leukemia

Jin, Qi; Martinez, Carlos A; Arcipowski, Kelly M; Zhu, Yixing; Gutiérrez-Díaz, Blanca T; Wang, Kenneth K; Johnson, Megan R; Volk, Andrew; Wang, Feng; Wu, Jian; Grove, Charles; Wang, Hui; Sokirniy, Ivan; Thomas, Paul M; Goo, Young Ah; Abshiru, Nebiyu A; Hijiya, Nobuko; Peirs, Sofie; Vandamme, Niels; Berx, Geert; Goossens, Steven; Marshall, Stacy Ann; Rendleman, Emily J; Takahashi, Yoh-Hei; Wang, Lu; Rawat, Radhika; Bartom, Elizabeth T; Collings, Clayton K; Van Vlierberghe, Pieter; Bourquin, Jean-Pierre; Bornhauser, Beat; Serafin, Valentina; Bresolin, Silvia; Paganin, Maddalena; Accordi, Benedetta; Basso, Giuseppe; Kelleher, Neil L; Weinstock, Joseph; Suresh, Kumar; Crispino, John D; Shilatifard, Ali; Strikoudis, Alexandros; Mantis, Christine; Kandela, Irawati; Kelly, Stephen; Ueberheide, Beatrix; Ntziachristos, Panagiotis
PURPOSE/OBJECTIVE:T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes. However, direct inhibition of these pathways affects healthy tissues and cancer alike. Our goal in this work has been to identify enzymes active in T-ALL whose activity could be targeted for therapeutic purposes. EXPERIMENTAL DESIGN/METHODS:To identify and characterize new NOTCH1 druggable partners in T-ALL, we coupled studies of the NOTCH1 interactome to expression analysis and a series of functional analyses in cell lines, patient samples and xenograft models. RESULTS:We demonstrate that ubiquitin-specific protease 7 (USP7) interacts with NOTCH1 and controls leukemia growth by stabilizing the levels of NOTCH1 and JMJD3 histone demethylase. USP7 is highly expressed in T-ALL and is transcriptionally regulated by NOTCH1. In turn, USP7 controls NOTCH1 levels through deubiquitination. USP7 binds oncogenic targets and controls gene expression through stabilization of NOTCH1 and JMJD3 and ultimately H3K27me3 changes. We also show that USP7 and NOTCH1 bind T-ALL superenhancers, and inhibition of USP7 leads to a decrease of the transcriptional levels of NOTCH1 targets and significantly blocks T-ALL cell growth in vitro and in vivo. CONCLUSIONS:These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.
PMID: 30224337
ISSN: 1078-0432
CID: 3300342

Proteomic Approaches to Dissect Neuronal Signalling Pathways

Bowling, Heather L; Nayak, Shruti; Deinhardt, Katrin
With an increasing awareness of mental health issues and neurological disorders, "understanding the brain" is one of the biggest current challenges in biological research. This has been recognised by both governments and funding agencies, and it includes the need to understand connectivity of brain regions and coordinated network activity, as well as cellular and molecular mechanisms at play. In this chapter, we will describe how we have taken advantage of different proteomic techniques to unravel molecular mechanisms underlying two modulators of neuronal function: Neurotrophins and antipsychotics.
PMID: 31347065
ISSN: 0065-2598
CID: 3988252

Chemical Generation of Hydroxyl Radical for Oxidative 'Footprinting'

Leser, Micheal; Chapman, Jessica R; Khine, Michelle; Pegan, Jonathan; Law, Matt; Makkaoui, Mohammed El; Ueberheide, Beatrix M; Brenowitz, Michael
BACKGROUND:For almost four decades, hydroxyl radical chemically generated by Fenton chemistry has been a mainstay for the oxidative 'footprinting' of macromolecules. OBJECTIVE:In this article, we start by reviewing the application of chemical generation of hydroxyl radical to the development of oxidative footprinting of DNA and RNA and the subsequent application of the method to oxidative footprinting of proteins. We next discuss a novel strategy for generating hydroxyl radicals by Fenton chemistry that immobilizes catalytic iron on a solid surface (Pyrite Shrink Wrap laminate) for the application of nucleic acid and protein footprinting. METHOD/METHODS:Pyrite Shrink-Wrap Laminate is fabricated by depositing pyrite (Fe-S2, aka 'fool's gold') nanocrystals onto thermolabile plastic (Shrinky Dink). The laminate can be thermoformed into a microtiter plate format into which samples are deposited for oxidation. RESULTS:We demonstrate the utility of the Pyrite Shrink-Wrap Laminate for the chemical generation of hydroxyl radicals by mapping the surface of the T-cell co-stimulatory protein Programmed Death - 1 (PD-1) and the interface of the complex with its ligand PD-L1. CONCLUSION/CONCLUSIONS:We have developed and validated an affordable and reliable benchtop method of hydroxyl radical generation that will broaden the application of protein oxidative footprinting. Due to the minimal equipment required to implement this method, it should be easily adaptable by many laboratories with access to mass spectrometry.
PMID: 30543161
ISSN: 1875-5305
CID: 3694352

Subproteome of Lachesis muta rhombeata venom and preliminary studies on LmrSP-4, a novel snake venom serine proteinase

Wiezel, Gisele A; Bordon, Karla Cf; Silva, Ronivaldo R; Gomes, Mário Sr; Cabral, Hamilton; Rodrigues, Veridiana M; Ueberheide, Beatrix; Arantes, Eliane C
Background/UNASSIGNED:venom (LmrV), we decided to perform a subproteome analysis of its major fraction and investigated a novel component present in this venom. Methods/UNASSIGNED:LmrV was fractionated through molecular exclusion chromatography and the main fraction (S5) was submitted to fibrinogenolytic activity assay and fractionated by reversed-phase chromatography. The N-terminal sequences of the subfractions eluted from reversed-phase chromatography were determined by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated upon chromogenic substrates for thrombin (S-2238), plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the presence or absence of possible inhibitors. The fluorescence resonance energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was determined by MALDI-TOF and digested peptides after trypsin and Glu-C treatments were analyzed by high resolution MS/MS using different fragmentation modes. Results/UNASSIGNED:amino acid residue and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic serine proteinase with high activity against S-2302, being inhibited by PMSF and benzamidine, but not by 1,10-phenantroline. In addition, this enzyme exhibited maximum activity within the pH range from neutral to basic and between 40 and 50 °C. About 68% of the LmrSP-4 primary structure was covered, and its molecular mass is 28,190 Da. Conclusions/UNASSIGNED:Novel serine proteinase isoforms and a lectin were identified in LmrV. Additionally, a kallikrein-like serine proteinase that might be useful as molecular tool for investigating bradykinin-involving process was isolated and partially characterized.
PMCID:6521711
PMID: 31131000
ISSN: 1678-9199
CID: 4220892

Pathological Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma

Xu, Yang; Taylor, Paul; Andrade, Joshua; Ueberheide, Beatrix; Shuch, Brian; Glazer, Peter M; Bindra, Ranjit S; Moran, Michael F; Linehan, W Marston; Neel, Benjamin G
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an inherited cancer syndrome associated with a highly aggressive form of type 2 papillary renal cell carcinoma (PRCC). Germline inactivating alterations in fumarate hydratase (FH) cause HLRCC and result in elevated levels of reactive oxygen species (ROS). Recent work indicates that FH-/- PRCC cells have increased activation of ABL1, which promotes tumor growth, but how ABL1 is activated remains unclear. Given that oxidation can regulate protein-tyrosine phosphatase (PTP) catalytic activity, inactivation of an ABL-directed PTP by ROS might account for ABL1 activation in this malignancy. Our group previously developed "q-oxPTPome", a method that globally monitors the oxidation of classical PTPs. In this study, we present a refined q-oxPTPome, increasing its sensitivity by >10X. Applying q-oxPTPome to FH-deficient cell models showed that multiple PTPs were either highly oxidized (including PTPN12) or overexpressed. Highly oxidized PTP were those with relatively high sensitivity to exogenous H2O2. Most PTP oxidation in FH-deficient cells was reversible, although nearly 40% of PTPN13 was irreversibly oxidized to the sulfonic acid state. Using substrate-trapping mutants, we mapped PTPs to their putative substrates and found that only PTPN12 could target ABL1. Furthermore, knockdown experiments identified PTPN12 as the major ABL1 phosphatase, and overexpression of PTPN12 inhibited ABL1 phosphorylation and HLRCC cell growth. These results show that ROS-induced oxidation of PTPN12 accounts for ABL1 phosphorylation in HLRCC-associated PRCC, revealing a novel mechanism for inactivating a tumor suppressor gene product and establishing a direct link between pathological PTP oxidation and neoplastic disease.
PMID: 30297534
ISSN: 1538-7445
CID: 3334882