Searched for: person:wisnit01
High-fat diet-induced atherosclerosis promotes neurodegeneration in the triple transgenic (3 × Tg) mouse model of Alzheimer's disease associated with chronic platelet activation
Wang, Min; Lv, Junyan; Huang, Xiaoshan; Wisniewski, Thomas; Zhang, Wei
BACKGROUND:Epidemiological studies link vascular disease risk factors such as atherosclerosis, hypertension, and diabetes mellitus with Alzheimer's disease (AD). Whether there are direct links between these conditions to β-amyloid (Aβ) aggregation and tau pathology is uncertain. METHODS:To investigate the possible link between atherosclerosis and AD pathology, we subjected triple transgenic (3 × Tg) AD mice to a high-fat diet (HFD) at 3 months of age, which corresponds to early adulthood in humans. RESULTS:and clusterin. At 9 months and older, platelet-associated fibrillar Aβ aggregates were observed to obstruct the cerebral blood vessels in HFD-treated 3 × Tg mice. HFD-treated 3 × Tg mice exhibited a greater cerebral amyloid angiopathy (CAA) burden and increased cerebral vascular permeability, as well as more extensive neuroinflammation, tau hyperphosphorylation, and neuron loss. Disaggregation of preexisting platelet micro-clots with humanized GPIIIa49-66 scFv Ab (A11) significantly reduced platelet-associated fibrillar Aβ aggregates in vitro and improved vascular permeability in vivo. CONCLUSIONS:These findings suggest that a major contribution of atherosclerosis to AD pathology is via its effects on blood coagulation and the formation of platelet-mediated Aβ aggregates that compromise cerebral blood flow and therefore neuronal function. This leads to cognitive decline.
PMCID:8403418
PMID: 34454596
ISSN: 1758-9193
CID: 4989202
Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer's disease pathology in aged squirrel monkeys
Patel, Akash G; Nehete, Pramod N; Krivoshik, Sara R; Pei, Xuewei; Cho, Elizabeth L; Nehete, Bharti P; Ramani, Margish D; Shao, Yongzhao; Williams, Lawrence E; Wisniewski, Thomas; Scholtzova, Henrieta
Alzheimer's disease is the most common cause of dementia and the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The failure rate of clinical trials is very high, in part due to the premature translation of successful results in transgenic mouse models to patients. Extensive evidence suggests that dysregulation of innate immunity and microglia/macrophages plays a key role in Alzheimer's disease pathogenesis. Activated resident microglia and peripheral macrophages can display protective or detrimental phenotypes depending on the stimulus and environment. Toll-like receptors (TLRs) are a family of innate immune regulators known to play an important role in governing the phenotypic status of microglia. We have shown in multiple transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA) while promoting cognitive benefits. In the current study we have used a non-human primate model of sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. The major complications in current immunotherapeutic trials for Alzheimer's disease are amyloid-related imaging abnormalities, which are linked to the presence and extent of CAA; hence, the prominence of CAA in elderly squirrel monkeys makes them a valuable model for studying the safety of the CpG ODN-based concept of immunomodulation. We demonstrate that long-term use of Class B CpG ODN 2006 induces a favourable degree of innate immunity stimulation without producing excessive or sustained inflammation, resulting in efficient amelioration of both CAA and tau Alzheimer's disease-related pathologies in association with behavioural improvements and in the absence of microhaemorrhages in aged elderly squirrel monkeys. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. The present evidence together with our earlier, extensive preclinical research, validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach, increasing the likelihood of CpG ODN therapeutic efficacy in future clinical trials.
PMID: 34128045
ISSN: 1460-2156
CID: 4911532
Reader Response: Blood Biomarkers of Traumatic Brain Injury and Cognitive Impairment in Older Veterans
Wisniewski, Thomas; Fossati, Silvia
PMID: 34253655
ISSN: 1526-632x
CID: 4938342
Adamts18 modulates the development of the aortic arch and common carotid artery
Ye, Shuai; Yang, Ning; Lu, Tiantian; Wu, Taojing; Wang, Liya; Pan, Yi-Hsuan; Cao, Xiaohua; Yuan, Xiaobing; Wisniewski, Thomas; Dang, Suying; Zhang, Wei
Members of a disintegrin and metalloproteinases with thrombospondin motif (ADAMTS) family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the third and fourth branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.
PMCID:8215225
PMID: 34189436
ISSN: 2589-0042
CID: 4936962
Proteomics and Transcriptomics of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Patients
Leitner, Dominique F; Mills, James D; Pires, Geoffrey; Faustin, Arline; Drummond, Eleanor; Kanshin, Evgeny; Nayak, Shruti; Askenazi, Manor; Verducci, Chloe; Chen, Bei Jun; Janitz, Michael; Anink, Jasper J; Baayen, Johannes C; Idema, Sander; van Vliet, Erwin A; Devore, Sasha; Friedman, Daniel; Diehl, Beate; Scott, Catherine; Thijs, Roland; Wisniewski, Thomas; Ueberheide, Beatrix; Thom, Maria; Aronica, Eleonora; Devinsky, Orrin
OBJECTIVE:To identify the molecular signaling pathways underlying sudden unexpected death in epilepsy (SUDEP) and high-risk SUDEP compared to epilepsy control patients. METHODS:For proteomics analyses, we evaluated the hippocampus and frontal cortex from microdissected post-mortem brain tissue of 12 SUDEP and 14 non-SUDEP epilepsy patients. For transcriptomics analyses, we evaluated hippocampus and temporal cortex surgical brain tissue from mesial temporal lobe epilepsy (MTLE) patients: 6 low-risk and 8 high-risk SUDEP as determined by a short (< 50 seconds) or prolonged (≥ 50 seconds) postictal generalized EEG suppression (PGES) that may indicate severely depressed brain activity impairing respiration, arousal, and protective reflexes. RESULTS:In autopsy hippocampus and cortex, we observed no proteomic differences between SUDEP and non-SUDEP epilepsy patients, contrasting with our previously reported robust differences between epilepsy and non-epilepsy control patients. Transcriptomics in hippocampus and cortex from surgical epilepsy patients segregated by PGES identified 55 differentially expressed genes (37 protein-coding, 15 lncRNAs, three pending) in hippocampus. CONCLUSION/CONCLUSIONS:The SUDEP proteome and high-risk SUDEP transcriptome were similar to other epilepsy patients in hippocampus and frontal cortex, consistent with diverse epilepsy syndromes and comorbidities associated with SUDEP. Studies with larger cohorts and different epilepsy syndromes, as well as additional anatomic regions may identify molecular mechanisms of SUDEP.
PMID: 33910938
ISSN: 1526-632x
CID: 4852152
A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications
Frontera, Jennifer A; Yang, Dixon; Lewis, Ariane; Patel, Palak; Medicherla, Chaitanya; Arena, Vito; Fang, Taolin; Andino, Andres; Snyder, Thomas; Madhavan, Maya; Gratch, Daniel; Fuchs, Benjamin; Dessy, Alexa; Canizares, Melanie; Jauregui, Ruben; Thomas, Betsy; Bauman, Kristie; Olivera, Anlys; Bhagat, Dhristie; Sonson, Michael; Park, George; Stainman, Rebecca; Sunwoo, Brian; Talmasov, Daniel; Tamimi, Michael; Zhu, Yingrong; Rosenthal, Jonathan; Dygert, Levi; Ristic, Milan; Ishii, Haruki; Valdes, Eduard; Omari, Mirza; Gurin, Lindsey; Huang, Joshua; Czeisler, Barry M; Kahn, D Ethan; Zhou, Ting; Lin, Jessica; Lord, Aaron S; Melmed, Kara; Meropol, Sharon; Troxel, Andrea B; Petkova, Eva; Wisniewski, Thomas; Balcer, Laura; Morrison, Chris; Yaghi, Shadi; Galetta, Steven
BACKGROUND:Little is known regarding long-term outcomes of patients hospitalized with COVID-19. METHODS:We conducted a prospective study of 6-month outcomes of hospitalized COVID-19 patients. Patients with new neurological complications during hospitalization who survived were propensity score-matched to COVID-19 survivors without neurological complications hospitalized during the same period. The primary 6-month outcome was multivariable ordinal analysis of the modified Rankin Scale(mRS) comparing patients with or without neurological complications. Secondary outcomes included: activities of daily living (ADLs;Barthel Index), telephone Montreal Cognitive Assessment and Neuro-QoL batteries for anxiety, depression, fatigue and sleep. RESULTS:Of 606 COVID-19 patients with neurological complications, 395 survived hospitalization and were matched to 395 controls; N = 196 neurological patients and N = 186 controls completed follow-up. Overall, 346/382 (91%) patients had at least one abnormal outcome: 56% had limited ADLs, 50% impaired cognition, 47% could not return to work and 62% scored worse than average on ≥1 Neuro-QoL scale (worse anxiety 46%, sleep 38%, fatigue 36%, and depression 25%). In multivariable analysis, patients with neurological complications had worse 6-month mRS (median 4 vs. 3 among controls, adjusted OR 1.98, 95%CI 1.23-3.48, P = 0.02), worse ADLs (aOR 0.38, 95%CI 0.29-0.74, P = 0.01) and were less likely to return to work than controls (41% versus 64%, P = 0.04). Cognitive and Neuro-QOL metrics were similar between groups. CONCLUSIONS:Abnormalities in functional outcomes, ADLs, anxiety, depression and sleep occurred in over 90% of patients 6-months after hospitalization for COVID-19. In multivariable analysis, patients with neurological complications during index hospitalization had significantly worse 6-month functional outcomes than those without.
PMCID:8113108
PMID: 34000678
ISSN: 1878-5883
CID: 4876752
Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg
Dyakin, Victor V; Wisniewski, Thomas M; Lajtha, Abel
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
PMCID:8330555
PMID: 34350031
ISSN: 2073-8994
CID: 5066712
A Prospective Study of Neurologic Disorders in Hospitalized COVID-19 Patients in New York City
Frontera, Jennifer A; Sabadia, Sakinah; Lalchan, Rebecca; Fang, Taolin; Flusty, Brent; Millar-Vernetti, Patricio; Snyder, Thomas; Berger, Stephen; Yang, Dixon; Granger, Andre; Morgan, Nicole; Patel, Palak; Gutman, Josef; Melmed, Kara; Agarwal, Shashank; Bokhari, Matthew; Andino, Andres; Valdes, Eduard; Omari, Mirza; Kvernland, Alexandra; Lillemoe, Kaitlyn; Chou, Sherry H-Y; McNett, Molly; Helbok, Raimund; Mainali, Shraddha; Fink, Ericka L; Robertson, Courtney; Schober, Michelle; Suarez, Jose I; Ziai, Wendy; Menon, David; Friedman, Daniel; Friedman, David; Holmes, Manisha; Huang, Joshua; Thawani, Sujata; Howard, Jonathan; Abou-Fayssal, Nada; Krieger, Penina; Lewis, Ariane; Lord, Aaron S; Zhou, Ting; Kahn, D Ethan; Czeisler, Barry M; Torres, Jose; Yaghi, Shadi; Ishida, Koto; Scher, Erica; de Havenon, Adam; Placantonakis, Dimitris; Liu, Mengling; Wisniewski, Thomas; Troxel, Andrea B; Balcer, Laura; Galetta, Steven
OBJECTIVE:To determine the prevalence and associated mortality of well-defined neurologic diagnoses among COVID-19 patients, we prospectively followed hospitalized SARS-Cov-2 positive patients and recorded new neurologic disorders and hospital outcomes. METHODS:We conducted a prospective, multi-center, observational study of consecutive hospitalized adults in the NYC metropolitan area with laboratory-confirmed SARS-CoV-2 infection. The prevalence of new neurologic disorders (as diagnosed by a neurologist) was recorded and in-hospital mortality and discharge disposition were compared between COVID-19 patients with and without neurologic disorders. RESULTS:Of 4,491 COVID-19 patients hospitalized during the study timeframe, 606 (13.5%) developed a new neurologic disorder in a median of 2 days from COVID-19 symptom onset. The most common diagnoses were: toxic/metabolic encephalopathy (6.8%), seizure (1.6%), stroke (1.9%), and hypoxic/ischemic injury (1.4%). No patient had meningitis/encephalitis, or myelopathy/myelitis referable to SARS-CoV-2 infection and 18/18 CSF specimens were RT-PCR negative for SARS-CoV-2. Patients with neurologic disorders were more often older, male, white, hypertensive, diabetic, intubated, and had higher sequential organ failure assessment (SOFA) scores (all P<0.05). After adjusting for age, sex, SOFA-scores, intubation, past history, medical complications, medications and comfort-care-status, COVID-19 patients with neurologic disorders had increased risk of in-hospital mortality (Hazard Ratio[HR] 1.38, 95% CI 1.17-1.62, P<0.001) and decreased likelihood of discharge home (HR 0.72, 95% CI 0.63-0.85, P<0.001). CONCLUSIONS:Neurologic disorders were detected in 13.5% of COVID-19 patients and were associated with increased risk of in-hospital mortality and decreased likelihood of discharge home. Many observed neurologic disorders may be sequelae of severe systemic illness.
PMID: 33020166
ISSN: 1526-632x
CID: 4626712
Clinicopathological Staging of Dynamics of Neurodegeneration and Neuronal Loss in Alzheimer Disease
Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Ma, Shuang Yong; Wegiel, Jarek; Badmaev, Eulalia; de Leon, Mony; Wisniewski, Thomas; Reisberg, Barry
Clinical and neuropathological staging of Alzheimer's disease (AD) neurodegeneration and neuronal loss dynamics is the baseline for identification of treatment targets and timing. The aim of this study of 14 brain regions in 25 subjects diagnosed with AD and 13 age-matched control subjects was to establish the pattern of neurodegeneration, and the severity and rate of neuronal loss in mild cognitive impairment/mild AD (Functional Assessment Staging [FAST] test 3-4), moderate to moderately severe AD (FAST 5-6), and severe AD (FAST 7). The study revealed (1) the most severe neuronal loss in FAST 3-4; (2) the highest rate of neuronal loss in FAST 5-6, to the "critical" point limiting further increase in neuronal loss; (3) progression of neurofibrillary degeneration, but decline of neuronal loss to a floor level in FAST 7; and (4) structure-specific rate of neuronal loss caused by neurofibrillary degeneration and a large pool of neuronal loss caused by other mechanisms. This study defines a range and speed of progression of AD pathology and functional decline that might potentially be prevented by the arrest of neuronal loss, both related and unrelated to neurofibrillary degeneration, during the 9-year duration of mild cognitive impairment/mild AD.
PMID: 33270870
ISSN: 1554-6578
CID: 4694342
Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel: A Meta-analysis
Kunkle, Brian W; Schmidt, Michael; Klein, Hans-Ulrich; Naj, Adam C; Hamilton-Nelson, Kara L; Larson, Eric B; Evans, Denis A; De Jager, Phil L; Crane, Paul K; Buxbaum, Joe D; Ertekin-Taner, Nilufer; Barnes, Lisa L; Fallin, M Daniele; Manly, Jennifer J; Go, Rodney C P; Obisesan, Thomas O; Kamboh, M Ilyas; Bennett, David A; Hall, Kathleen S; Goate, Alison M; Foroud, Tatiana M; Martin, Eden R; Wang, Li-Sao; Byrd, Goldie S; Farrer, Lindsay A; Haines, Jonathan L; Schellenberg, Gerard D; Mayeux, Richard; Pericak-Vance, Margaret A; Reitz, Christiane; Graff-Radford, Neill R; Martinez, Izri; Ayodele, Temitope; Logue, Mark W; Cantwell, Laura B; Jean-Francois, Melissa; Kuzma, Amanda B; Adams, L D; Vance, Jeffery M; Cuccaro, Michael L; Chung, Jaeyoon; Mez, Jesse; Lunetta, Kathryn L; Jun, Gyungah R; Lopez, Oscar L; Hendrie, Hugh C; Reiman, Eric M; Kowall, Neil W; Leverenz, James B; Small, Scott A; Levey, Allan I; Golde, Todd E; Saykin, Andrew J; Starks, Takiyah D; Albert, Marilyn S; Hyman, Bradley T; Petersen, Ronald C; Sano, Mary; Wisniewski, Thomas; Vassar, Robert; Kaye, Jeffrey A; Henderson, Victor W; DeCarli, Charles; LaFerla, Frank M; Brewer, James B; Miller, Bruce L; Swerdlow, Russell H; Van Eldik, Linda J; Paulson, Henry L; Trojanowski, John Q; Chui, Helena C; Rosenberg, Roger N; Craft, Suzanne; Grabowski, Thomas J; Asthana, Sanjay; Morris, John C; Strittmatter, Stephen M; Kukull, Walter A
Importance:Compared with non-Hispanic White individuals, African American individuals from the same community are approximately twice as likely to develop Alzheimer disease. Despite this disparity, the largest Alzheimer disease genome-wide association studies to date have been conducted in non-Hispanic White individuals. In the largest association analyses of Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at 5q35 were previously implicated. Objective:To identify additional risk loci in African American individuals by increasing the sample size and using the African Genome Resource panel. Design, Setting, and Participants:This genome-wide association meta-analysis used case-control and family-based data sets from the Alzheimer Disease Genetics Consortium. There were multiple recruitment sites throughout the United States that included individuals with Alzheimer disease and controls of African American ancestry. Analysis began October 2018 and ended September 2019. Main Outcomes and Measures:Diagnosis of Alzheimer disease. Results:A total of 2784 individuals with Alzheimer disease (1944 female [69.8%]) and 5222 controls (3743 female [71.7%]) were analyzed (mean [SD] age at last evaluation, 74.2 [13.6] years). Associations with 4 novel common loci centered near the intracellular glycoprotein trafficking gene EDEM1 (3p26; P = 8.9 × 10-7), near the immune response gene ALCAM (3q13; P = 9.3 × 10-7), within GPC6 (13q31; P = 4.1 × 10-7), a gene critical for recruitment of glutamatergic receptors to the neuronal membrane, and within VRK3 (19q13.33; P = 3.5 × 10-7), a gene involved in glutamate neurotoxicity, were identified. In addition, several loci associated with rare variants, including a genome-wide significant intergenic locus near IGF1R at 15q26 (P = 1.7 × 10-9) and 6 additional loci with suggestive significance (P ≤ 5 × 10-7) such as API5 at 11p12 (P = 8.8 × 10-8) and RBFOX1 at 16p13 (P = 5.4 × 10-7) were identified. Gene expression data from brain tissue demonstrate association of ALCAM, ARAP1, GPC6, and RBFOX1 with brain β-amyloid load. Of 25 known loci associated with Alzheimer disease in non-Hispanic White individuals, only APOE, ABCA7, TREM2, BIN1, CD2AP, FERMT2, and WWOX were implicated at a nominal significance level or stronger in African American individuals. Pathway analyses strongly support the notion that immunity, lipid processing, and intracellular trafficking pathways underlying Alzheimer disease in African American individuals overlap with those observed in non-Hispanic White individuals. A new pathway emerging from these analyses is the kidney system, suggesting a novel mechanism for Alzheimer disease that needs further exploration. Conclusions and Relevance:While the major pathways involved in Alzheimer disease etiology in African American individuals are similar to those in non-Hispanic White individuals, the disease-associated loci within these pathways differ.
PMCID:7573798
PMID: 33074286
ISSN: 2168-6157
CID: 4734452