Searched for: person:Karim-Jean Armache (armack01) or Joel Belasco (belasj01) or bhabhg01 or burdes01 or cadwek01 or chaom01 or ekierd01 or froemr01 or gelmaj01 or jah12 or hubbas01 or knauth01 or lafaij01 or littmd01 or nancej01 or narask01 or neubet01 or novicr01 or ringsn01 or schwas13 or sfeira01 or skolne01 or smiths04 or stoked01 or torrej12 or treisj01 or turnbd01 or wangd01 or rifkid01 or ryooh01 or wilsoe01
active:yes
exclude-minors:true
A role for organ level dynamics in morphogenesis of the C. elegans hermaphrodite distal tip cell
Tolkin, Theadora; Burnett, Julia; Hubbard, E Jane Albert
The morphology of cells in vivo can arise from a variety of mechanisms. In the Caenorhabditis elegans hermaphrodite gonad, the distal tip cell (DTC) elaborates into a complex plexus over a relatively short developmental time period, but the mechanisms underlying this change in cell morphology are not well defined. We correlated the time of DTC elaboration with the L4-to-adult molt, but ruled out a relevant heterochronic pathway as a cue for DTC elaboration. Instead, we found that the timing of gonad elongation and aspects of underlying germline flux influence DTC elaboration. We propose a 'hitch and tow' aspect of organ-level dynamics that contributes to cellular morphogenesis, whereby germline flux drags the flexible DTC cell cortex away from its stationary cell body. More broadly, we speculate that this mechanism may contribute to cell shape changes in other contexts with implications for development and disease.
PMCID:11488634
PMID: 39382030
ISSN: 1477-9129
CID: 5806112
Numerical model for electrogenic transport by the ATP-dependent potassium pump KdpFABC
Hussein, Adel; Zhang, Xihui; Stokes, David L
In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes. In order to understand the nuances of these assays and to characterize effects of various operational parameters, we have developed a numerical model to simulate data produced by two relevant assays: fluorescence from voltage-sensitive dyes and current recorded by capacitive coupling on solid supported membranes. Parameters of the model, which has been implemented in Python, are described along with underlying principles of the computational algorithm. Experimental data from KdpFABC, a K+ pump associated with P-type ATPases, are presented, and model parameters have been adjusted to mimic these data. In addition, effects of key parameters such as nonselective leak conductance and turnover rate are demonstrated. Finally, simulated data are used to illustrate the effects of capacitive coupling on measured current and to compare alternative methods for quantification of raw data.
PMCID:11304011
PMID: 38950825
ISSN: 2667-0747
CID: 5689652
Discovery of a novel inhibitor of macropinocytosis with antiviral activity
Porebski, Bartlomiej; Christ, Wanda; Corman, Alba; Haraldsson, Martin; Barz, Myriam; Lidemalm, Louise; Häggblad, Maria; Ilmain, Juliana; Wright, Shane C; Murga, Matilde; Schlegel, Jan; Jarvius, Malin; Lapins, Maris; Sezgin, Erdinc; Bhabha, Gira; Lauschke, Volker M; Carreras-Puigvert, Jordi; Lafarga, Miguel; Klingström, Jonas; Hühn, Daniela; Fernandez-Capetillo, Oscar
Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.
PMID: 38956870
ISSN: 1525-0024
CID: 5687122
ABD-3, the confluence of powerful antibacterial modalities: ABDs delivering and expressing lss, the gene encoding lysostaphin
Ram, Geeta; Chiu, LiTing; Dey, Somrita; Ross, Hope F; Cammer, Michael; Novick, Richard P
In response to the antimicrobial resistance crisis, we have developed a powerful and versatile therapeutic platform, the Antibacterial Drone (ABD) system. The ABD consists of a highly mobile staphylococcal pathogenicity island re-purposed to deliver genes encoding antibacterial proteins. The chromosomally located island is induced by a co-resident helper phage, packaged in phage-like particles, and released in very high numbers upon phage-induced lysis. ABD particles specifically adsorb to bacteria causing an infection and deliver their DNA to these bacteria, where the bactericidal cargo genes are expressed, kill the bacteria, and cure the infection. Here, we report a major advance of the system, incorporation of the gene encoding a secreted, bactericidal, species-specific lytic enzyme, lysostsphin. This ABD not only kills the bacterium that has been attacked by the ABD, but also any surrounding bacteria that are sensitive to the lytic enzyme which is released by secretion and by lysis of the doomed cell. So while the killing field is thus expanded, there are no civilian casualties (bacteria that are insensitive to the ABD and its cargo protein(s) are not inadvertently killed). Without amplifying the number of ABD particles (which are not re-packaged), the expression and release of the cargo gene's product dramatically extend the effective reach of the ABD. A cargo gene that encodes a secreted bactericidal protein also enables the treatment of a mixed bacterial infection in which one of the infecting organisms is insensitive to the ABD delivery system but is sensitive to the ABD's secreted cargo protein.
PMCID:11373205
PMID: 39072634
ISSN: 1098-6596
CID: 5687332
eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle
Katow, Hidetaka; Ryoo, Hyung Don
The translation elongation factor eEF1α (eukaryotic elongation factor 1α) mediates mRNA translation by delivering aminoacyl-tRNAs to ribosomes. eEF1α also has other reported roles, including the regulation of actin dynamics. However, these distinct roles of eEF1α are often challenging to uncouple and remain poorly understood in aging metazoan tissues. The genomes of mammals and Drosophila encode two eEF1α paralogs, with eEF1α1 expressed ubiquitously and eEF1α2 expression more limited to neurons and muscle cells. Here, we report that eEF1α2 plays a unique role in maintaining myofibril homeostasis during aging in Drosophila. Specifically, we generated an eEF1α2 null allele, which was viable and showed two distinct muscle phenotypes. In young flies, the mutants had thinner myofibrils in indirect flight muscles that could be rescued by expressing eEF1α1. With aging, the muscles of the mutant flies began showing abnormal distribution of actin and myosin in muscles, but without a change in actin and myosin protein levels. This age-related phenotype could not be rescued by eEF1α1 overexpression. These findings support an unconventional role of Drosophila eEF1α2 in age-related homeostasis of muscle myofibers.
PMCID:11381931
PMID: 39207054
ISSN: 1754-8411
CID: 5687452
Mouse Cardiovascular Imaging
Phoon, Colin K L; Aristizábal, Orlando; Farhoud, Mohammed; Turnbull, Daniel H; Wadghiri, Youssef Z
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
PMCID:11371386
PMID: 39222027
ISSN: 2691-1299
CID: 5687622
Apical cell expansion maintained by Dusky-like establishes a scaffold for corneal lens morphogenesis
Ghosh, Neha; Treisman, Jessica E
The Drosophila corneal lens is entirely composed of chitin and other apical extracellular matrix components, and it is not known how it acquires the biconvex shape that enables it to focus light onto the retina. We show here that the zona pellucida domain-containing protein Dusky-like is essential for normal corneal lens morphogenesis. Dusky-like transiently localizes to the expanded apical surfaces of the corneal lens-secreting cells and prevents them from undergoing apical constriction and apicobasal contraction. Dusky-like also controls the arrangement of two other zona pellucida domain proteins, Dumpy and Piopio, external to the developing corneal lens. Loss of either dusky-like or dumpy delays chitin accumulation and disrupts the outer surface of the corneal lens. We find that artificially inducing apical constriction by activating myosin contraction is sufficient to similarly alter chitin deposition and corneal lens morphology. These results demonstrate the importance of cell shape in controlling the morphogenesis of overlying apical extracellular matrix structures such as the corneal lens.
PMID: 39167639
ISSN: 2375-2548
CID: 5680772
Synergistic activation by Glass and Pointed promotes neuronal identity in the Drosophila eye disc
Wang, Hongsu; Bollepogu Raja, Komal Kumar; Yeung, Kelvin; Morrison, Carolyn A; Terrizzano, Antonia; Khodadadi-Jamayran, Alireza; Chen, Phoenix; Jordan, Ashley; Fritsch, Cornelia; Sprecher, Simon G; Mardon, Graeme; Treisman, Jessica E
The integration of extrinsic signaling with cell-intrinsic transcription factors can direct progenitor cells to differentiate into distinct cell fates. In the developing Drosophila eye, differentiation of photoreceptors R1-R7 requires EGFR signaling mediated by the transcription factor Pointed, and our single-cell RNA-Seq analysis shows that the same photoreceptors require the eye-specific transcription factor Glass. We find that ectopic expression of Glass and activation of EGFR signaling synergistically induce neuronal gene expression in the wing disc in a Pointed-dependent manner. Targeted DamID reveals that Glass and Pointed share many binding sites in the genome of developing photoreceptors. Comparison with transcriptomic data shows that Pointed and Glass induce photoreceptor differentiation through intermediate transcription factors, including the redundant homologs Scratch and Scrape, as well as directly activating neuronal effector genes. Our data reveal synergistic activation of a multi-layered transcriptional network as the mechanism by which EGFR signaling induces neuronal identity in Glass-expressing cells.
PMCID:11330500
PMID: 39154080
ISSN: 2041-1723
CID: 5697332
Microbiota-induced plastic T cells enhance immune control of antigen-sharing tumors
Najar, Tariq A; Hao, Yuan; Hao, Yuhan; Romero-Meza, Gabriela; Dolynuk, Alexandra; Littman, Dan R
Therapies that harness the immune system to target and eliminate tumor cells have revolutionized cancer care. Immune checkpoint blockade (ICB), which boosts the anti-tumor immune response by inhibiting negative regulators of T cell activation1-3, is remarkably successful in a subset of cancer patients, yet a significant proportion do not respond to treatment, emphasizing the need to understand factors influencing the therapeutic efficacy of ICB4-9. The gut microbiota, consisting of trillions of microorganisms residing in the gastrointestinal tract, has emerged as a critical determinant of immune function and response to cancer immunotherapy, with multiple studies demonstrating association of microbiota composition with clinical response10-16. However, a mechanistic understanding of how gut commensal bacteria influence the efficacy of ICB remains elusive. Here we utilized a gut commensal microorganism, segmented filamentous bacteria (SFB), which induces an antigen-specific Th17 cell effector program17, to investigate how colonization with it affects the efficacy of ICB in restraining distal growth of tumors sharing antigen with SFB. We find that anti-PD-1 treatment effectively inhibits the growth of implanted SFB antigen-expressing melanoma only if mice are colonized with SFB. Through T cell receptor clonal lineage tracing, fate mapping, and peptide-MHC tetramer staining, we identify tumor-associated SFB-specific Th1-like cells derived from the homeostatic Th17 cells induced by SFB colonization in the small intestine lamina propria. These gut-educated ex-Th17 cells produce high levels of the pro-inflammatory cytokines IFN-γ and TNF-α, and promote expansion and effector functions of CD8+ tumor-infiltrating cytotoxic lymphocytes, thereby controlling tumor growth. A better understanding of how distinct intestinal commensal microbes can promote T cell plasticity-dependent responses against antigen-sharing tumors may allow for the design of novel cancer immunotherapeutic strategies.
PMCID:11343098
PMID: 39185202
ISSN: 2692-8205
CID: 5729512
Unraveling cysteine deficiency-associated rapid weight loss
Varghese, Alan; Gusarov, Ivan; Gamallo-Lana, Begoña; Dolgonos, Daria; Mankan, Yatin; Shamovsky, Ilya; Phan, Mydia; Jones, Rebecca; Gomez-Jenkins, Maria; White, Eileen; Wang, Rui; Jones, Drew; Papagiannakopoulos, Thales; Pacold, Michael E; Mar, Adam C; Littman, Dan R; Nudler, Evgeny
Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.
PMCID:11312522
PMID: 39131293
ISSN: 2692-8205
CID: 5688592