Try a new search

Format these results:

Searched for:

person:alldrm01

in-biosketch:yes

Total Results:

73


Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD)

Alldred, Melissa J; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D
Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
PMCID:4297601
PMID: 25031177
ISSN: 1863-2653
CID: 1071192

Reduction of beta-amyloid and gamma-secretase by calorie restriction in female Tg2576 mice

Schafer, Marissa J; Alldred, Melissa J; Lee, Sang Han; Calhoun, Michael E; Petkova, Eva; Mathews, Paul M; Ginsberg, Stephen D
Research indicates that female risk of developing Alzheimer's disease (AD) is greater than that of males. Moderate reduction of calorie intake, known as calorie restriction (CR), reduces pathology in AD mouse models and is a potentially translatable prevention measure for individuals at-risk for AD, as well as an important tool for understanding how the brain endogenously attenuates age-related pathology. Whether sex influences the response to CR remains unknown. In this study, we assessed the effect of CR on beta-amyloid peptide (Abeta) pathology and hippocampal CA1 neuron specific gene expression in the Tg2576 mouse model of cerebral amyloidosis. Relative to ad libitum (AL) feeding, CR feeding significantly reduced hippocampal Abeta burden in 15-month-old female, but not age-matched male, Tg2576 mice. Sustained CR also significantly reduced expression of presenilin enhancer 2 (Psenen) and presenilin 1, components of the gamma-secretase complex, in Tg2576 females. These results indicate that long-term CR significantly reduces age-dependent female Tg2576 Abeta pathology, which is likely to involve CR-mediated reductions in gamma-secretase-dependent amyloid precursor protein (APP) metabolism.
PMCID:4346433
PMID: 25556162
ISSN: 0197-4580
CID: 1420202

Expression profile analysis of vulnerable CA1 pyramidal neurons in young-middle aged Ts65Dn mice

Alldred, Melissa J; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D
Down syndrome (DS) is the most prevalent cause of intellectual disability (ID). Individuals with DS show a variety of cognitive deficits, most notably in hippocampal learning and memory, and display pathological hallmarks of Alzheimer's disease (AD), with neurodegeneration of cholinergic basal forebrain (CBF) neurons. Elucidation of the molecular and cellular underpinnings of neuropathology has been assessed via gene expression analysis in a relevant animal model, termed the Ts65Dn mouse. The Ts65Dn mouse is a segmental trisomy model of DS which mimics DS/AD pathology, notably age-related cognitive dysfunction and degeneration of basal forebrain cholinergic neurons (BFCNs). To determine expression level changes, molecular fingerprinting of Cornu Ammonis 1 (CA1) pyramidal neurons was performed in adult (4-9 month old) Ts65Dn mice, at the initiation of BFCN degeneration. To quantitate transcriptomic changes during this early time period, laser capture microdissection (LCM), terminal continuation (TC) RNA amplification, custom-designed microarray analysis, and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting was performed. Results indicate significant alterations within CA1 pyramidal neurons of Ts65Dn mice compared to normal disomic (2N) littermates, notably in the downregulation of neurotrophins and their cognate neurotrophin receptors among other classes of transcripts relevant to neurodegeneration. These results of this single population gene expression analysis at the time of septohippocampal deficits in a trisomic mouse model shed light on a vulnerable circuit that may cause the AD-like pathology invariably seen in DS that could help to identify mechanisms of degeneration, and provide novel gene targets for therapeutic interventions. J. Comp. Neurol., 2014. (c) 2014 Wiley Periodicals, Inc.
PMCID:4232465
PMID: 25131634
ISSN: 0021-9967
CID: 1142212

Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures

Schafer, Marissa J; Dolgalev, Igor; Alldred, Melissa J; Heguy, Adriana; Ginsberg, Stephen D
Calorie restriction (CR) enhances longevity and mitigates aging phenotypes in numerous species. Physiological responses to CR are cell-type specific and variable throughout the lifespan. However, the mosaic of molecular changes responsible for CR benefits remains unclear, particularly in brain regions susceptible to deterioration during aging. We examined the influence of long-term CR on the CA1 hippocampal region, a key learning and memory brain area that is vulnerable to age-related pathologies, such as Alzheimer's disease (AD). Through mRNA sequencing and NanoString nCounter analysis, we demonstrate that one year of CR feeding suppresses age-dependent signatures of 882 genes functionally associated with synaptic transmission-related pathways, including calcium signaling, long-term potentiation (LTP), and Creb signaling in wild-type mice. By comparing the influence of CR on hippocampal CA1 region transcriptional profiles at younger-adult (5 months, 2.5 months of feeding) and older-adult (15 months, 12.5 months of feeding) timepoints, we identify conserved upregulation of proteome quality control and calcium buffering genes, including heat shock 70 kDa protein 1b (Hspa1b) and heat shock 70 kDa protein 5 (Hspa5), protein disulfide isomerase family A member 4 (Pdia4) and protein disulfide isomerase family A member 6 (Pdia6), and calreticulin (Calr). Expression levels of putative neuroprotective factors, klotho (Kl) and transthyretin (Ttr), are also elevated by CR in adulthood, although the global CR-specific expression profiles at younger and older timepoints are highly divergent. At a previously unachieved resolution, our results demonstrate conserved activation of neuroprotective gene signatures and broad CR-suppression of age-dependent hippocampal CA1 region expression changes, indicating that CR functionally maintains a more youthful transcriptional state within the hippocampal CA1 sector.
PMCID:4519125
PMID: 26221964
ISSN: 1932-6203
CID: 1698342

Microarray analysis of entorhinal cortex stellate cells in the Ts65Dn mouse model of Down syndrome and Alzheimer’s disease following maternal choline supplementation (MCS) [Meeting Abstract]

Chao, HM; Alldred, MJ; Lee, Sh; Petkova, E; Ginsberg, SD
ORIGINAL:0011761
ISSN: 1558-3635
CID: 2479142

Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice

Yan, Jian; Ginsberg, Stephen D; Powers, Brian; Alldred, Melissa J; Saltzman, Arthur; Strupp, Barbara J; Caudill, Marie A
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P
PMCID:4202107
PMID: 24963152
ISSN: 0892-6638
CID: 1051242

Glutamatergic Transmission Aberration: A Major Cause of Behavioral Deficits in a Murine Model of Down's Syndrome

Kaur, Gurjinder; Sharma, Ajay; Xu, Wenjin; Gerum, Scott; Alldred, Melissa J; Subbanna, Shivakumar; Basavarajappa, Balapal S; Pawlik, Monika; Ohno, Masuo; Ginsberg, Stephen D; Wilson, Donald A; Guilfoyle, David N; Levy, Efrat
Trisomy 21, or Down's syndrome (DS), is the most common genetic cause of intellectual disability. Altered neurotransmission in the brains of DS patients leads to hippocampus-dependent learning and memory deficiency. Although genetic mouse models have provided important insights into the genes and mechanisms responsible for DS-specific changes, the molecular mechanisms leading to memory deficits are not clear. We investigated whether the segmental trisomy model of DS, Ts[Rb(12.1716)]2Cje (Ts2), exhibits hippocampal glutamatergic transmission abnormalities and whether these alterations cause behavioral deficits. Behavioral assays demonstrated that Ts2 mice display a deficit in nest building behavior, a measure of hippocampus-dependent nonlearned behavior, as well as dysfunctional hippocampus-dependent spatial memory tested in the object-placement and the Y-maze spontaneous alternation tasks. Magnetic resonance spectra measured in the hippocampi revealed a significantly lower glutamate concentration in Ts2 as compared with normal disomic (2N) littermates. The glutamate deficit accompanied hippocampal NMDA receptor1 (NMDA-R1) mRNA and protein expression level downregulation in Ts2 compared with 2N mice. In concert with these alterations, paired-pulse analyses suggested enhanced synaptic inhibition and/or lack of facilitation in the dentate gyrus of Ts2 compared with 2N mice. Ts2 mice also exhibited disrupted synaptic plasticity in slice recordings of the hippocampal CA1 region. Collectively, these findings imply that deficits in glutamate and NMDA-R1 may be responsible for impairments in synaptic plasticity in the hippocampus associated with behavioral dysfunctions in Ts2 mice. Thus, these findings suggest that glutamatergic deficits have a significant role in causing intellectual disabilities in DS.
PMCID:3983795
PMID: 24719089
ISSN: 0270-6474
CID: 881932

Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment

Counts, Scott E; Alldred, Melissa J; Che, Shaoli; Ginsberg, Stephen D; Mufson, Elliott J
Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4-1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding beta-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder. This article is part of a Special Issue entitled 'Neurodegenerative Disorders'.
PMCID:3951099
PMID: 24445080
ISSN: 0028-3908
CID: 829392

Maternal choline supplementation programs offspring choline metabolism in a mouse model of Down syndrome [Meeting Abstract]

Yan, Jian; Ginsberg, Stephen D.; Powers, Brian; Alldred, Melissa J.; Saltzman, Arthur; Strupp, Barbara J.; Caudill, Marie A.
ISI:000319860500031
ISSN: 0892-6638
CID: 453012

Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction

Alldred, Melissa J; Duff, Karen E; Ginsberg, Stephen D
The hTau mouse model of tauopathy was utilized to assess gene expression changes in vulnerable hippocampal CA1 neurons. CA1 pyramidal neurons were microaspirated via laser capture microdissection followed by RNA amplification in combination with custom-designed microarray analysis and qPCR validation in hTau mice and nontransgenic (ntg) littermates aged 11-14months. Statistical analysis revealed ~8% of all the genes on the array platform were dysregulated, with notable downregulation of several synaptic-related markers including synaptophysin (Syp), synaptojanin, and synaptobrevin, among others. Downregulation was also observed for select glutamate receptors (GluRs), Psd-95, TrkB, and several protein phosphatase subunits. In contrast, upregulation of tau isoforms and a calpain subunit were found. Microarray assessment of synaptic-related markers in a separate cohort of hTau mice at 7-8months of age indicated only a few alterations compared to the 11-14month cohort, suggesting progressive synaptic dysfunction occurs as tau accumulates in CA1 pyramidal neurons. An assessment of SYP and PSD-95 expression was performed in the hippocampal CA1 sector of hTau and ntg mice via confocal laser scanning microscopy along with hippocampal immunoblot analysis for protein-based validation of selected microarray observations. Results indicate significant decreases in SYP-immunoreactive and PSD-95-immunoreactive puncta as well as downregulation of SYP-immunoreactive and PSD-95-immunoreactive band intensity in hTau mice compared to age-matched ntg littermates. In summary, the high prevalence of downregulation of synaptic-related genes indicates that the moderately aged hTau mouse may be a model of tau-induced synaptodegeneration, and has profound effects on how we perceive progressive tau pathology affecting synaptic transmission in AD
PMCID:3259262
PMID: 22079237
ISSN: 1095-953x
CID: 149951