Try a new search

Format these results:

Searched for:

person:alum01 or dabovb01 or mezzav01 or dbh274 or loomic01 or selvas05 or dewanz01

Total Results:

167


Paracrine regulations of IFN-γ secreting CD4+ T cells by lumican and biglycan are protective in allergic contact dermatitis

Maiti, George; Frikeche, Jihane; Loomis, Cynthia; Cammer, Michael; Eichman, Stephanie L; Chakravarti, Shukti
Allergic contact dermatitis (ACD) is a delayed-type IV hypersensitivity response driven by innate and adaptive immune cells. While specific immune regulations of these cell types are amply elucidated, their regulations by extracellular matrix (ECM) components and T cell mediated adaptive immunity in ACD remains unclear. Lumican and biglycan are ECM proteoglycans abundant in the dermis and lymph node, known to regulate innate immune myeloid cells, but have not been investigated in lymphoid cell regulations in ACD. By immunohistology we localized lumican and biglycan in skin biopsies of psoriatic patients. Using wild type (WT), lumican and biglycan knockout mice, we investigated CD4+T cell infiltration, activation and proliferation in the skin and draining lymph node (dLN) of CHS-challenged mice by immunohistochemistry and flow cytometry. We used the OT-II adoptive transfer model to test antigen specific CD4+T cell activation. We assessed interactions of the proteoglycans with LFA-1 on T cells by confocal microscopy. Compared to WTs, the knockouts showed severe ear inflammation, with increased CD4+T cells infiltration in the dermis. CHS-challenged knockout mice dLN showed increased T-bet, STAT1 and -STAT4 signaling, indicating enhanced Th1 commitment and proliferation. We found that WT lymph node fibroblastic reticular cells (FRCs) secrete lumican, biglycan and decorin, a related proteoglycan, while none are expressed by naive or activated T cells. Lumican and biglycan interact with LFA-1 on T cell surfaces, and in vitro all three proteoglycans suppress CD4+T cell activation. Secreted by dLN FRCs, lumican, biglycan, and possibly decorin interact with LFA-1 on CD4+T cells to restrict its activation and reduce dermatitis severity.
PMID: 40518026
ISSN: 1569-1802
CID: 5870662

A Phase 0, Window of Opportunity Study of Parasympathetic Stimulation with Bethanechol in Localized Pancreatic Adenocarcinoma Prior to Surgery

White, Ruth A; Mezzano-Robinson, Valeria; Shi, Qiongyu; Kuriakose, Nadine; Schrope, Beth; Kluger, Michael D; Sugahara, Kazuki; Chabot, John; Manji, Gulam; Oberstein, Paul; Remotti, Helen; Wang, Timothy C; Bates, Susan E
BACKGROUND:The parasympathetic branch of the autonomic nervous system has shown tumor-suppressive effects in preclinical models of pancreatic adenocarcinoma (PDAC) by inhibiting cancer stem cells and suppressing inflammatory cytokine production. Based on these findings, we hypothesized that bethanechol, an FDA-approved parasympathomimetic agent targeting muscarinic receptors, could enhance treatment efficacy in PDAC. METHODS:We conducted a Phase 0/window of opportunity study evaluating short term parasympathetic activation with fixed dose bethanechol (100 mg twice daily) in subjects with resectable or borderline resectable PDAC prior to surgery. The primary endpoint was change in cell proliferation by Ki-67 expression compared to stage matched controls. Secondary endpoints included tissue expression of stem cell markers (CD44), infiltrating immune cells (CD8a, Granzyme B, and CD68), and changes in circulating inflammatory cytokine concentrations. RESULTS:Seventeen patients were enrolled with 13 eligible for analysis of endpoints. Median age was 74 (59-86), 6 female (46%), all ECOG 0-1 and median duration of treatment was 8 days (7-13). R0 resections were achieved in 9 patients (69%). There was no difference in Ki67 and CD44 tissue biomarkers between bethanechol-treated and control samples. Decreased numbers of Granzyme B-expressing cells were seen in bethanechol-treated tissues. Bethanechol treatment was associated with suppression of circulating IL-18. The most common treatment related adverse events (TRAE) were hot flashes (30.7%), urinary frequency (15.4%), increased salivation (15.4%), hyperhidrosis (7.7%), and nausea (7.7%). There were no Grade 3 or higher adverse effects. No surgical complications were attributed to bethanechol treatment. CONCLUSION/CONCLUSIONS:Bethanechol 100 mg twice daily is well tolerated in patients with PDAC in this small phase 0/window of opportunity study (NCT03572283). Bethanechol treatment was associated with decreased Granzyme B positive cells and decreased circulating IL-18 consistent with an anti-inflammatory role for parasympathetic muscarinic signaling in PDAC.
PMID: 40448309
ISSN: 1549-490x
CID: 5854602

Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data

Tan, Jimin; Le, Hortense; Deng, Jiehui; Liu, Yingzhuo; Hao, Yuan; Hollenberg, Michelle; Liu, Wenke; Wang, Joshua M; Xia, Bo; Ramaswami, Sitharam; Mezzano, Valeria; Loomis, Cynthia; Murrell, Nina; Moreira, Andre L; Cho, Kyunghyun; Pass, Harvey I; Wong, Kwok-Kin; Ban, Yi; Neel, Benjamin G; Tsirigos, Aristotelis; Fenyö, David
High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
PMID: 39979589
ISSN: 2157-846x
CID: 5812702

MetFinder: A Tool for Automated Quantitation of Metastatic Burden in Histological Sections From Preclinical Models

Karz, Alcida; Coudray, Nicolas; Bayraktar, Erol; Galbraith, Kristyn; Jour, George; Shadaloey, Arman Alberto Sorin; Eskow, Nicole; Rubanov, Andrey; Navarro, Maya; Moubarak, Rana; Baptiste, Gillian; Levinson, Grace; Mezzano, Valeria; Alu, Mark; Loomis, Cynthia; Lima, Daniel; Rubens, Adam; Jilaveanu, Lucia; Tsirigos, Aristotelis; Hernando, Eva
As efforts to study the mechanisms of melanoma metastasis and novel therapeutic approaches multiply, researchers need accurate, high-throughput methods to evaluate the effects on tumor burden resulting from specific interventions. We show that automated quantification of tumor content from whole slide images is a compelling solution to assess in vivo experiments. In order to increase the outflow of data collection from preclinical studies, we assembled a large dataset with annotations and trained a deep neural network for the quantitative analysis of melanoma tumor content on histopathological sections of murine models. After assessing its performance in segmenting these images, the tool obtained consistent results with an orthogonal method (bioluminescence) of measuring metastasis in an experimental setting. This AI-based algorithm, made freely available to academic laboratories through a web-interface called MetFinder, promises to become an asset for melanoma researchers and pathologists interested in accurate, quantitative assessment of metastasis burden.
PMID: 39254030
ISSN: 1755-148x
CID: 5690152

Neuraminidase-mediated enhancement of Streptococcus pneumoniae colonization is associated with altered mucus characteristics and distribution

Montgomery, Matthew T; Ortigoza, Mila; Loomis, Cynthia; Weiser, Jeffrey N
UNLABELLED:(Spn) upregulates neuraminidases (NA) that cleave sialic acid (SA) from host glycans. Because sialylation is thought to contribute to the physical properties that determine mucus function, we posited that Spn directly alters host mucus through NA activity. By directly imaging the colonized URT, we demonstrated NA-mediated alterations to the characteristics and distribution of mucus along the respiratory epithelium, where colonizing bacteria are found. Mucus exposed to NA showed increased localization within goblet cells and lining the glycocalyx. By contrast, NA-naïve mucus was more likely to be observed sloughing away from the epithelial surface. We also visualized Spn in the URT and observed that NA promoted efficient bacterial localization to the firm mucus layer overlying the glycocalyx, whereas NA-deficient Spn was associated more with loose mucus. By facilitating tighter association with the glycocalyx, NA promoted increased Spn colonization density. The magnitude of the NA-mediated effect on colonization was widened during late colonization by increased evasion of host-mediated clearance mechanisms. Thus, Spn-encoded NAs directly modify the host environment by desialylating mucus, which allows close interaction with mucus at the epithelium, and this is associated with enhanced bacterial colonization. IMPORTANCE/OBJECTIVE:Although severe illness and death caused by Spn result from secondary invasive diseases including pneumonia, sepsis, and meningitis, stable colonization of the upper respiratory tract (URT) is a prerequisite to invasive disease. Therefore, understanding host-Spn dynamics during asymptomatic colonization of the URT is warranted with respect to the pathogenesis of Spn disease. In this study, we found that Spn NA activity directly alters mucus characteristics that result in increased density and duration of URT colonization. Therefore, targeting Spn NA activity during URT colonization may be a viable strategy to mitigate Spn infection.
PMID: 39660923
ISSN: 2150-7511
CID: 5762672

Digital spatial profiling to predict recurrence in grade 3 stage I lung adenocarcinoma

Chang, Stephanie H; Mezzano-Robinson, Valeria; Zhou, Hua; Moreira, Andre; Pillai, Raymond; Ramaswami, Sitharam; Loomis, Cynthia; Heguy, Adriana; Tsirigos, Aristotelis; Pass, Harvey I
OBJECTIVE:Early-stage lung adenocarcinoma is treated with local therapy alone, although patients with grade 3 stage I lung adenocarcinoma have a 50% 5-year recurrence rate. Our objective is to determine if analysis of the tumor microenvironment can create a predictive model for recurrence. METHODS:Thirty-four patients with grade 3 stage I lung adenocarcinoma underwent surgical resection. Digital spatial profiling was used to perform genomic (n = 31) and proteomic (n = 34) analyses of pancytokeratin positive and negative tumor cells. K-means clustering was performed on the top 50 differential genes and top 20 differential proteins, with Kaplan-Meier recurrence curves based on patient clustering. External validation of high-expression genes was performed with Kaplan-Meier plotter. RESULTS:There were no significant clinicopathologic differences between patients who did (n = 14) and did not (n = 20) have recurrence. Median time to recurrence was 806 days; median follow-up with no recurrence was 2897 days. K-means clustering of pancytokeratin positive genes resulted in a model with a Kaplan-Meier curve with concordance index of 0.75. K-means clustering for pancytokeratin negative genes was less successful at differentiating recurrence (concordance index 0.6). Genes upregulated or downregulated for recurrence were externally validated using available public databases. Proteomic data did not reach statistical significance but did internally validate the genomic data described. CONCLUSIONS:Genomic difference in lung adenocarcinoma may be able to predict risk of recurrence. After further validation, stratifying patients by this risk may help guide who will benefit from adjuvant therapy.
PMID: 37890657
ISSN: 1097-685x
CID: 5620342

Metabolic coordination between skin epithelium and type 17 immunity sustains chronic skin inflammation

Subudhi, Ipsita; Konieczny, Piotr; Prystupa, Aleksandr; Castillo, Rochelle L; Sze-Tu, Erica; Xing, Yue; Rosenblum, Daniel; Reznikov, Ilana; Sidhu, Ikjot; Loomis, Cynthia; Lu, Catherine P; Anandasabapathy, Niroshana; Suárez-Fariñas, Mayte; Gudjonsson, Johann E; Tsirigos, Aristotelis; Scher, Jose U; Naik, Shruti
Inflammatory epithelial diseases are spurred by the concomitant dysregulation of immune and epithelial cells. How these two dysregulated cellular compartments simultaneously sustain their heightened metabolic demands is unclear. Single-cell and spatial transcriptomics (ST), along with immunofluorescence, revealed that hypoxia-inducible factor 1α (HIF1α), downstream of IL-17 signaling, drove psoriatic epithelial remodeling. Blocking HIF1α in human psoriatic lesions ex vivo impaired glycolysis and phenocopied anti-IL-17 therapy. In a murine model of skin inflammation, epidermal-specific loss of HIF1α or its target gene, glucose transporter 1, ameliorated epidermal, immune, vascular, and neuronal pathology. Mechanistically, glycolysis autonomously fueled epithelial pathology and enhanced lactate production, which augmented the γδ T17 cell response. RORγt-driven genetic deletion or pharmacological inhibition of either lactate-producing enzymes or lactate transporters attenuated epithelial pathology and IL-17A expression in vivo. Our findings identify a metabolic hierarchy between epithelial and immune compartments and the consequent coordination of metabolic processes that sustain inflammatory disease.
PMID: 38772365
ISSN: 1097-4180
CID: 5654422

Comparison of cardiac autonomic innervation in post-mortem tissue from individuals with kidney failure and preserved kidney function

Soomro, Qandeel; Mezzano, Valeria; Narula, Navneet; Rapkiewicz, Amy; Loomis, Cynthia; Charytan, David M
PMID: 38869950
ISSN: 1555-905x
CID: 5669312

Impaired upper respiratory tract barrier function during postnatal development predisposes to invasive pneumococcal disease

Lokken-Toyli, Kristen L; Aggarwal, Surya D; Bee, Gavyn Chern Wei; de Steenhuijsen Piters, Wouter A A; Wu, Cindy; Chen, Kenny Zhi Ming; Loomis, Cynthia; Bogaert, Debby; Weiser, Jeffrey N
Infants are highly susceptible to invasive respiratory and gastrointestinal infections. To elucidate the age-dependent mechanism(s) that drive bacterial spread from the mucosa, we developed an infant mouse model using the prevalent pediatric respiratory pathogen, Streptococcus pneumoniae (Spn). Despite similar upper respiratory tract (URT) colonization levels, the survival rate of Spn-infected infant mice was significantly decreased compared to adults and corresponded with Spn dissemination to the bloodstream. An increased rate of pneumococcal bacteremia in early life beyond the newborn period was attributed to increased bacterial translocation across the URT barrier. Bacterial dissemination in infant mice was independent of URT monocyte or neutrophil infiltration, phagocyte-derived ROS or RNS, inflammation mediated by toll-like receptor 2 or interleukin 1 receptor signaling, or the pore-forming toxin pneumolysin. Using molecular barcoding of Spn, we found that only a minority of bacterial clones in the nasopharynx disseminated to the blood in infant mice, indicating the absence of robust URT barrier breakdown. Rather, transcriptional profiling of the URT epithelium revealed a failure of infant mice to upregulate genes involved in the tight junction pathway. Expression of many such genes was also decreased in early life in humans. Infant mice also showed increased URT barrier permeability and delayed mucociliary clearance during the first two weeks of life, which corresponded with tighter attachment of bacteria to the respiratory epithelium. Together, these results demonstrate a window of vulnerability during postnatal development when altered mucosal barrier function facilitates bacterial dissemination.
PMCID:11078396
PMID: 38718049
ISSN: 1553-7374
CID: 5658402

Inhibiting influenza virus transmission using a broadly acting neuraminidase that targets host sialic acids in the upper respiratory tract

Ortigoza, Mila B; Mobini, Catherina L; Rocha, Hedy L; Bartlett, Stacey; Loomis, Cynthia A; Weiser, Jeffrey N
The ongoing transmission of influenza A viruses (IAV) for the past century continues to be a burden to humans. IAV binds terminal sialic acids (SA) of sugar molecules present within the upper respiratory tract (URT) in order to successfully infect hosts. The two most common SA structures that are important for IAV infection are those with α2,3- and α2,6-linkages. While mice were once considered to be an unsuitable system for studying IAV transmission due to their lack of α2,6-SA in the trachea, we have successfully demonstrated that IAV transmission in infant mice is remarkably efficient. This finding led us to re-evaluate the SA composition of the URT of mice using in situ immunofluorescence and examine its in vivo contribution to transmission for the first time. We demonstrate that mice express both α2,3- and α2,6-SA in the URT and that the difference in expression between infants and adults contributes to the variable transmission efficiencies observed. Furthermore, selectively blocking α2,3-SA or α2,6-SA within the URT of infant mice using lectins was necessary but insufficient at inhibiting transmission, and simultaneous blockade of both receptors was crucial in achieving the desired inhibitory effect. By employing a broadly acting neuraminidase to indiscriminately remove both SA moieties in vivo, we effectively suppressed viral shedding and halted the transmission of different strains of influenza viruses. These results emphasize the utility of the infant mouse model for studying IAV transmission and strongly indicate that broadly targeting host SA is an effective approach that inhibits IAV contagion.IMPORTANCEInfluenza virus transmission studies have historically focused on viral mutations that alter hemagglutinin binding to sialic acid (SA) receptors in vitro. However, SA binding preference does not fully account for the complexities of influenza A virus transmission in humans. Our previous findings reveal that viruses that are known to bind α2,6-SA in vitro have different transmission kinetics in vivo, suggesting that diverse SA interactions may occur during their life cycle. In this study, we examine the role of host SA on viral replication, shedding, and transmission in vivo. We highlight the critical role of SA presence during virus shedding, such that attachment to SA during virion egress is equally important as detachment from SA during virion release. These insights support the potential of broadly acting neuraminidases as therapeutic agents capable of restraining viral transmission in vivo. Our study unveils intricate virus-host interactions during shedding, highlighting the necessity to develop innovative strategies to effectively target transmission.
PMID: 38206008
ISSN: 2150-7511
CID: 5635222