Try a new search

Format these results:

Searched for:

person:angell03

in-biosketch:true

Total Results:

113


Pleural Ultrasound for Detection of Postbronchoscopy Pneumothorax in Lung Transplant Recipients

Soni, Nilam J; Winsett, Robert E; Velez, Maria I; Singhal, Preeti; Proud, Kevin C; Abedi, Ali; Restrepo, Marcos I; Angel, Luis F
PMID: 34374670
ISSN: 1948-8270
CID: 5006142

Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Pérez-Pérez, Lizzette; Shen, Guomiao; Jour, George; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Heguy, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
PMID: 34465900
ISSN: 2058-5276
CID: 4998422

Percutaneous Dilational Tracheostomy for Coronavirus Disease 2019 Patients Requiring Mechanical Ventilation

Angel, Luis F; Amoroso, Nancy E; Rafeq, Samaan; Mitzman, Brian; Goldenberg, Ronald; Shekar, Saketh Palasamudram; Troxel, Andrea B; Zhang, Yan; Chang, Stephanie H; Kwak, Paul; Amin, Milan R; Sureau, Kimberly; Nafday, Heidi B; Thomas, Sarun; Kon, Zachary; Sommer, Philip M; Segal, Leopoldo N; Moore, William H; Cerfolio, Robert
OBJECTIVES/OBJECTIVE:To assess the impact of percutaneous dilational tracheostomy in coronavirus disease 2019 patients requiring mechanical ventilation and the risk for healthcare providers. DESIGN/METHODS:Prospective cohort study; patients were enrolled between March 11, and April 29, 2020. The date of final follow-up was July 30, 2020. We used a propensity score matching approach to compare outcomes. Study outcomes were formulated before data collection and analysis. SETTING/METHODS:Critical care units at two large metropolitan hospitals in New York City. PATIENTS/METHODS:Five-hundred forty-one patients with confirmed severe coronavirus disease 2019 respiratory failure requiring mechanical ventilation. INTERVENTIONS/METHODS:Bedside percutaneous dilational tracheostomy with modified visualization and ventilation. MEASUREMENTS AND MAIN RESULTS/RESULTS:Required time for discontinuation off mechanical ventilation, total length of hospitalization, and overall patient survival. Of the 541 patients, 394 patients were eligible for a tracheostomy. One-hundred sixteen were early percutaneous dilational tracheostomies with median time of 9 days after initiation of mechanical ventilation (interquartile range, 7-12 d), whereas 89 were late percutaneous dilational tracheostomies with a median time of 19 days after initiation of mechanical ventilation (interquartile range, 16-24 d). Compared with patients with no tracheostomy, patients with an early percutaneous dilational tracheostomy had a higher probability of discontinuation from mechanical ventilation (absolute difference, 30%; p < 0.001; hazard ratio for successful discontinuation, 2.8; 95% CI, 1.34-5.84; p = 0.006) and a lower mortality (absolute difference, 34%, p < 0.001; hazard ratio for death, 0.11; 95% CI, 0.06-0.22; p < 0.001). Compared with patients with late percutaneous dilational tracheostomy, patients with early percutaneous dilational tracheostomy had higher discontinuation rates from mechanical ventilation (absolute difference 7%; p < 0.35; hazard ratio for successful discontinuation, 1.53; 95% CI, 1.01-2.3; p = 0.04) and had a shorter median duration of mechanical ventilation in survivors (absolute difference, -15 d; p < 0.001). None of the healthcare providers who performed all the percutaneous dilational tracheostomies procedures had clinical symptoms or any positive laboratory test for severe acute respiratory syndrome coronavirus 2 infection. CONCLUSIONS:In coronavirus disease 2019 patients on mechanical ventilation, an early modified percutaneous dilational tracheostomy was safe for patients and healthcare providers and associated with improved clinical outcomes.
PMID: 33826583
ISSN: 1530-0293
CID: 4839312

Imaging Course of Lung Transplantation: From Patient Selection to Postoperative Complications

Kim, Stacy J; Azour, Lea; Hutchinson, Barry D; Shirsat, Hemlata; Zhou, Fang; Narula, Navneet; Moreira, Andre L; Angel, Luis; Ko, Jane P; Moore, William H
Lung transplant is increasingly performed for the treatment of end-stage lung disease. As the number of lung transplants and transplant centers continues to rise, radiologists will more frequently participate in the care of patients undergoing lung transplant, both before and after transplant. Potential donors and recipients undergo chest radiography and CT as part of their pretransplant assessment to evaluate for contraindications to transplant and to aid in surgical planning. After transplant, recipients undergo imaging during the postoperative hospitalization and also in the long-term outpatient setting. Radiologists encounter a wide variety of conditions leading to end-stage lung disease and a myriad of posttransplant complications, some of which are unique to lung transplantation. Familiarity with these pathologic conditions, including their imaging findings and their temporal relationship to the transplant, is crucial to accurate radiologic interpretation. Knowledge of the surgical techniques and expected postoperative appearance prevents confusing normal posttransplant imaging findings with complications. A basic understanding of the indications, contraindications, and surgical considerations of lung transplant aids in imaging interpretation and protocoling and also facilitates communication between radiologists and transplant physicians. Despite medical and surgical advances over the past several decades, lung transplant recipients currently have an average posttransplant life expectancy of only 6.7 years. As members of the transplant team, radiologists can help maximize patient survival and hopefully increase posttransplant life expectancy and quality of life in the coming decades. ©RSNA, 2021 An invited commentary by Bierhals is available online. Online supplemental material is available for this article.
PMID: 34197245
ISSN: 1527-1323
CID: 4926882

High Lung Transplant Center Volume is Associated with Increased Survival in Hospitalized Patients

Ranganath, Neel K; Malas, Jad; Chen, Stacey; Smith, Deane E; Chang, Stephanie H; Lesko, Melissa B; Angel, Luis F; Lonze, Bonnie E; Kon, Zachary N
BACKGROUND:The lung allocation score (LAS) was designed to optimize the utilization of pulmonary allografts based on anticipated pre-transplant survival and post-transplant outcome. Hospital admission status, not included in the LAS, has not been comprehensively investigated with regards to organ allocation. The objective of this study was to determine if pre-transplant hospital admission status is independently associated with post-transplant mortality and to determine if high center volume is associated with improved survival in that cohort.background METHODS: All consecutive adult lung transplants provided by the Scientific Registry of Transplant Recipients were retrospectively reviewed (2007-2017). Group stratification was performed based on admission status at the time of transplantation. A Cox proportional hazard regression was used to determine independent associations with post-transplant mortality. RESULTS:During the study period, 20% (3,747/18,416) of recipients were admitted to the hospital at the time of transplantation. Compared to non-admitted recipients, LAS were significantly higher and waitlist times significantly shorter. Admitted recipients had higher rates of prolonged mechanical ventilation, higher rates of post-transplant dialysis, and longer post-transplant lengths of stay. Pre-transplant admission to a low volume center conferred significantly worse survival compared to non-admitted patients, and high volume centers were independently associated with improved survival compared to low volume centers.results CONCLUSIONS: Hospital admission status is associated with increased post-transplant mortality independent from the LAS and the factors from which it is calculated. However, adjusted survival analysis demonstrates that admission to a high volume center appears to be independently associated with improved survival compared to low volume centers. CONCLUSION/CONCLUSIONS/:
PMID: 32950494
ISSN: 1552-6259
CID: 4605292

Evaluation of the lower airway microbiota in patients with severe sars-cov2 [Meeting Abstract]

Barnett, C R; Sulaiman, I; Tsay, J; Wu, B; Krolikowski, K; Li, Y; Postelnicu, R; Carpenito, J; Rafeq, S; Clemente, J C; Angel, L F; Mukherjee, V; Pradhan, D; Brosnahan, S; Lubinsky, A S; Yeung, S; Jour, G; Shen, G; Chung, M; Khanna, K; Ghedin, E; Segal, L N
RATIONALE:Secondary infections with bacterial pathogens are thought to be responsible for poor outcomes in the 1918 Spanish and H1N1 pandemics. We postulate that poor prognosis in patients with SARS-CoV2 may be associated with uncontrollable viral replication, co-infection with a secondary pathogen, and over exuberant host immune response. We seek to evaluate whether there is an association between distinct features of the lower airway microbiota and poor clinical outcome in patients with SARS-CoV2.
METHOD(S):We collected lower airway samples in 148 patients from NYU admitted between 3/10/2020 and 5/10/2020 with severe respiratory failure requiring mechanical ventilation and that underwent bronchoscopy for airway clearance and/or tracheostomy. Clinical outcome was defined as dead vs alive. DNA was isolated in parallel using zymoBIOMICSTM DNA/RNA Miniprep Kit (Cat: R2002) as per manufacturer's instructions. The V4 region of the 16S rRNA gene marker was sequenced using Illumina MiSeq. Sequences were analyzed using the Quantitative Insights into Microbial Ecology (QIIME version 1.9.1) pipeline. Total bacterial load was evaluated in lower airway samples using digital droplet PCR targeting the 16S rRNA gene.
RESULT(S):Of the 148 patients included, 114 survived (77%) and 34 (23%) died. Among those with poor clinical outcome, there was a non-statistically significant trend towards higher age and BMI. Patients who died more commonly had chronic kidney disease and prior cerebrovascular accidents, and more often required dialysis. There was no statistically significant difference in the rate of positive bacterial respiratory or blood cultures among those that survived vs. those that died (75 vs. 73% and 43 vs 38%, respectively). Topographical analysis of the 16S RNA microbiome shows compositional differences between the upper and lower airways based on beta diversity comparisons. When comparing across clinical outcomes, the alpha diversity was lower in the dead group but there was no statistically significant difference in overall community composition (beta diversity). Taxonomic differential enrichment analysis using DESeq analysis showed that oral commensals were enriched in the group that survived. Patients that died had a higher bacterial load in their lower airways than those who survived.
CONCLUSION(S):Using samples obtained via bronchoscopy we identified lower airway microbiota signatures associated with mortality among critical patients infected with SARS-CoV2. Taxonomic signals identified as associated with poor prognosis did not reveal bacterial taxa commonly classified as respiratory pathogens. This data is not supportive of the hypothesis that secondary untreated bacterial co-infections are responsible for increased mortality in patients with severe SARS-CoV-2
EMBASE:635309029
ISSN: 1535-4970
CID: 4915522

Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Koralov, Sergei; Wu, Benjamin; Yeung, Stephen; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel; Heguy, Adriana; Uyeki, Timothy; Clemente, Jose; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian; Koide, Shohei; Stapleford, Kenneth; Khanna, Kamal; Ghedin, Elodie; Weiden, Michael; Segal, Leopoldo
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:8010736
PMID: 33791687
ISSN: n/a
CID: 4830952

Early Outcomes From Early Tracheostomy for Patients With COVID-19

Kwak, Paul E; Connors, Joseph R; Benedict, Peter A; Timen, Micah R; Wang, Binhuan; Zhang, Yan; Youlios, Stephanie; Sureau, Kimberly; Persky, Michael J; Rafeq, Samaan; Angel, Luis; Amin, Milan R
Importance/UNASSIGNED:Decision-making in the timing of tracheostomy in patients with coronavirus disease 2019 (COVID-19) has centered on the intersection of long-standing debates on the benefits of early vs late tracheostomy, assumptions about timelines of infectivity of the novel coronavirus, and concern over risk to surgeons performing tracheostomy. Multiple consensus guidelines recommend avoiding or delaying tracheostomy, without evidence to indicate anticipated improvement in outcomes as a result. Objective/UNASSIGNED:To assess outcomes from early tracheostomy in the airway management of patients with COVID-19 requiring mechanical ventilation. Design, Setting, and Participants/UNASSIGNED:A retrospective medical record review was completed of 148 patients with reverse transcriptase-polymerase chain reaction-confirmed COVID-19 requiring mechanical ventilation at a single tertiary-care medical center in New York City from March 1 to May 7, 2020. Interventions/UNASSIGNED:Open or percutaneous tracheostomy. Main Outcomes and Measures/UNASSIGNED:The primary outcomes were time from symptom onset to (1) endotracheal intubation, (2) tracheostomy; time from endotracheal intubation to tracheostomy; time from tracheostomy to (1) tracheostomy tube downsizing, (2) decannulation; total time on mechanical ventilation; and total length of stay. Results/UNASSIGNED:Participants included 148 patients, 120 men and 28 women, with an overall mean (SD) age of 58.1 (15.8) years. Mean (SD; median) time from symptom onset to intubation was 10.57 (6.58; 9) days; from symptom onset to tracheostomy, 22.76 (8.84; 21) days; and from endotracheal intubation to tracheostomy, 12.23 (6.82; 12) days. The mean (SD; median) time to discontinuation of mechanical ventilation was 33.49 (18.82; 27) days; from tracheostomy to first downsize, 23.02 (13.76; 19) days; and from tracheostomy to decannulation, 30.16 (16.00; 26) days. The mean (SD; median) length of stay for all patients was 51.29 (23.66; 45) days. Timing of tracheostomy was significantly associated with length of stay: median length of stay was 40 days in those who underwent early tracheostomy (within 10 days of endotracheal intubation) and 49 days in those who underwent late tracheostomy (median difference, -8; 95% CI, -15 to -1). In a competing risks model with death as the competing risk, the late tracheostomy group was 16% less likely to discontinue mechanical ventilation (hazard ratio, 0.84; 95% CI, 0.55 to 1.28). Conclusions and Relevance/UNASSIGNED:This cohort study from the first 2 months of the pandemic in New York City provides an opportunity to reconsider guidelines for tracheostomy for patients with COVID-19. Findings demonstrated noninferiority of early tracheostomy and challenges recommendations to categorically delay or avoid tracheostomy in this patient population. When aligned with emerging evidence about the timeline of infectivity of the novel coronavirus, this approach may optimize outcomes from tracheostomy while keeping clinicians safe.
PMID: 33331855
ISSN: 2168-619x
CID: 4718022

Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Hegu, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; De Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:7924286
PMID: 33655261
ISSN: n/a
CID: 4801472

Extracorporeal Membrane Oxygenation Support in Severe COVID-19

Kon, Zachary N; Smith, Deane E; Chang, Stephanie H; Goldenberg, Ronald M; Angel, Luis F; Carillo, Julius A; Geraci, Travis C; Cerfolio, Robert J; Montgomery, Robert A; Moazami, Nader; Galloway, Aubrey C
BACKGROUND:Coronavirus disease 2019 (Covid-19) remains a worldwide pandemic with a high mortality rate among patients requiring mechanical ventilation. The limited data that exists regarding the utility of extracorporeal membrane oxygenation (ECMO) in these critically ill patients shows poor overall outcomes. This paper describes our institutional practice regarding the application and management of ECMO support for patients with Covid-19 and reports promising early outcomes. METHODS:>60 mmHg with no life-limiting comorbidities. Patients were cannulated at bedside and were managed with protective lung ventilation, early tracheostomy, bronchoscopies and proning as clinically indicated. RESULTS:Of 321 patients intubated for Covid-19, 77 (24%) patients were evaluated for ECMO support with 27 (8.4%) patients placed on ECMO. All patients were placed on veno-venous ECMO. Current survival is 96.3%, with only one mortality to date in over 350 days of total ECMO support. Thirteen patients (48.1%) remain on ECMO support, while 13 patients (48.1%) have been successfully decannulated. Seven patients (25.9%) have been discharged from the hospital. Six patients (22.2%) remain in the hospital of which four are on room-air. No healthcare workers that participated in ECMO cannulation developed symptoms of or tested positive for Covid-19. CONCLUSIONS:The early outcomes presented here suggest that the judicious use of ECMO support in severe Covid-19 may be clinically beneficial.
PMCID:7366119
PMID: 32687823
ISSN: 1552-6259
CID: 4531922