Try a new search

Format these results:

Searched for:

person:balapb01

in-biosketch:yes

Total Results:

71


A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice

Subbanna, Shivakumar; Nagre, Nagaraja N; Shivakumar, Madhu; Basavarajappa, Balapal S
The present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively. 5-AzaC treatment of P7 mice induced significant deficits in spatial memory, social recognition, and object memory in adult mice and deficits in long-term potentiation (LTP) in adult hippocampal slices. Together, these data demonstrate that the inhibition of DNA methylation by 5-AzaC treatment in P7 mice causes neurodegeneration and impairs ERK1/2 activation and Arc protein expression in neonatal mice and induces behavioral abnormalities in adult mice. DNA methylation-mediated mechanisms appear to be necessary for the proper maturation of synaptic circuits during development, and disruption of this process by 5-AzaC could lead to abnormal cognitive function.
PMCID:5159185
PMID: 27594097
ISSN: 1873-507x
CID: 4142332

Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits

Basavarajappa, Balapal S; Subbanna, Shivakumar
Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.
PMCID:4931489
PMID: 27070644
ISSN: 2076-3425
CID: 4142322

CB1 Receptor-Mediated Signaling Mechanisms in the Deleterious Effects of Spice Abuse

Chapter by: Basavarajappa, Balapal S.
in: Neuropathology of Drug Addictions and Substance Misuse by
[S.l. : s.n.], 2016
pp. 760-770
ISBN: 9780128002131
CID: 4142462

Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling

Basavarajappa, Balapal S
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
PMCID:4701023
PMID: 26529026
ISSN: 2076-3425
CID: 4142312

Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo

Yuan, A; Sershen, H; Veeranna; Basavarajappa, B S; Kumar, A; Hashim, A; Berg, M; Lee, J-H; Sato, Y; Rao, M V; Mohan, P S; Dyakin, V; Julien, J-P; Lee, V M-Y; Nixon, R A
Synaptic roles for neurofilament (NF) proteins have rarely been considered. Here, we establish all four NF subunits as integral resident proteins of synapses. Compared with the population in axons, NF subunits isolated from synapses have distinctive stoichiometry and phosphorylation state, and respond differently to perturbations in vivo. Completely eliminating NF proteins from brain by genetically deleting three subunits (alpha-internexin, NFH and NFL) markedly depresses hippocampal long-term potentiation induction without detectably altering synapse morphology. Deletion of NFM in mice, but not the deletion of any other NF subunit, amplifies dopamine D1-receptor-mediated motor responses to cocaine while redistributing postsynaptic D1-receptors from endosomes to plasma membrane, consistent with a specific modulatory role of NFM in D1-receptor recycling. These results identify a distinct pool of synaptic NF subunits and establish their key role in neurotransmission in vivo, suggesting potential novel influences of NF proteins in psychiatric as well as neurological states.
PMCID:4514553
PMID: 25869803
ISSN: 1476-5578
CID: 1684462

Functions of neurofilaments in synapses

Yuan, A; Sershen, H; Veeranna; Basavarajappa, B S; Kumar, A; Hashim, A; Berg, M; Lee, J-H; Sato, Y; Rao, M V; Mohan, P S; Dyakin, V; Julien, J-P; Lee, V M-Y; Nixon, R A
PMID: 26201270
ISSN: 1476-5578
CID: 1683992

Postnatal ethanol exposure alters levels of 2-arachidonylglycerol-metabolizing enzymes and pharmacological inhibition of monoacylglycerol lipase does not cause neurodegeneration in neonatal mice

Subbanna, Shivakumar; Psychoyos, Delphine; Xie, Shan; Basavarajappa, Balapal S
The consumption of ethanol by pregnant women may cause neurological abnormalities, affecting learning and memory processes in children, and are collectively described as fetal alcohol spectrum disorders. However, the molecular mechanisms underlying these changes are still poorly understood. In our previous studies, we found that ethanol treatment of postnatal day 7 (P7) mice significantly enhances the anandamide levels but not the 2-arachidonylglycerol (2-AG) levels and induces widespread neurodegeneration, but the reason for the lack of significant effects of ethanol on the 2-AG level is unknown. In this study, we examined developmental changes in diacylglycerol lipase-α, β (DAGL-α and β) and monoacylglycerol lipase (MAGL). We found that the levels of these proteins were significantly higher in adult brains compared to those detected early in brain development. Next, we examined the influence of P7 ethanol treatment on these enzymes, finding that it differentially altered the DAGL-α protein and mRNA levels but consistently enhanced those of the DAGL-β. Interestingly, the ethanol treatment enhanced MAGL protein and mRNA levels. Inhibition of MAGL with KML29 failed to induce neurodegeneration in P7 mice. Collectively, these findings suggest that ethanol significantly activates DAGL-β and MAGL in the neonatal brain, resulting in no net change in 2-AG levels.
PMCID:4490952
PMID: 25857698
ISSN: 1471-4159
CID: 4142302

CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation

Nagre, Nagaraja N; Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Basavarajappa, Balapal S
The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type-1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol-induced activation of caspase 3. Together, these data demonstrate that ethanol-induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis. Schematic mechanism of action by which ethanol impairs DNA methylation. Studies have demonstrated that ethanol has the capacity to bring epigenetic changes to contribute to the development of fetal alcohol spectrum disorder (FASD). However, the mechanisms are not well studied. P7 ethanol induces the activation of caspase 3 and impairs DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) proteins (→). The inhibition or genetic ablation of cannabinoid receptor type-1 or inhibition of histone methyltransferase (G9a) by Bix (-----) or inhibition of caspase 3 activation by Q- quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh) () rescue loss of DNMT1, DNMT3A as well as DNA methylation. Hence, the putative DNMT1/DNMT3A/DNA methylation mechanism may have a potential regulatory role in FASD.
PMCID:4351764
PMID: 25487288
ISSN: 1471-4159
CID: 4142282

Biochemical and pharmacological characterization of three toxic phospholipase A2s from Daboia russelii snake venom

Kumar, J R; Basavarajappa, Balapal S; Vishwanath, B S; Gowda, T Veerabasappa
Three isoenzymes of phospholipase A2 (PLA2), VRV-PL-IIIc, VRV-PL-VII, and VRV-PL-IX were isolated from Daboia russelii snake venom. The venom, upon gel filtration on Sephadex G-75 column, resolved into six peaks (DRG75 I-VI). The VRV-PL-IIIc was purified by subjecting DRG75II to homogeneity by rechromatography in the presence of 8M urea on Sephadex G-75 column. The other two isoenzymes VRV-PL-VII and VRV-PL-IX were purified by subjecting DRG75III to ion exchange chromatography on CM-Sephadex C-25 column. Mol wt. for the three PLA2s, VRV-PL-IIIc, VRV-PL-VII, and VRV-PL-IX are 13.003kDa, 13.100kDa and 12.531kDa respectively. The VRV-PL-IIIc is not lethal to mice up to 14mg/kg body weight but it affects blood sinusoids and causes necrosis of the hepatocytes in liver. It causes hemorrhage in kidney and shrinkage of renal corpuscles and renal tubules. The LD50s for VRV-PL-VII and VRV-PL-IX are 7 and 7.5mg/kg body weight respectively. They induced neurotoxic symptoms similar to VRV-PL-V. All the three PLA2s are anticoagulant and induced varying degree of edema in the foot pads of mice. VRV-PL-V and VRV-PL-VII are shown to act as pre and post synaptic toxins, while VRV-PL-IX acts as presynaptic toxin. This is evident from experiments conducted on cultured hippocampal neurons by patch clamp electrophysiology.
PMID: 25478875
ISSN: 1532-0456
CID: 4142272

Pre-administration of G9a/GLP inhibitor during synaptogenesis prevents postnatal ethanol-induced LTP deficits and neurobehavioral abnormalities in adult mice

Subbanna, Shivakumar; Basavarajappa, Balapal S
It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. Recently, we found that histone H3 dimethylation (H3K9me2), which is mediated by G9a (lysine dimethyltransferase), is responsible for the neurodegeneration caused by ethanol exposure in P7 mice. In addition, pharmacological inhibition of G9a prior to ethanol treatment at P7 normalized H3K9me2 proteins to basal levels and prevented neurodegeneration in neonatal mice. Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin.
PMCID:4194267
PMID: 25017367
ISSN: 1090-2430
CID: 4142262