Try a new search

Format these results:

Searched for:

person:barnec03

in-biosketch:true

Total Results:

14


Lung Allograft Dysbiosis Associates with Immune Response and Primary Graft Dysfunction

Nelson, Nathaniel C; Wong, Kendrew K; Mahoney, Ian J; Malik, Tahir; Rudym, Darya; Lesko, Melissa B; Qayum, Seema; Lewis, Tyler C; Chang, Stephanie H; Chan, Justin C Y; Geraci, Travis C; Li, Yonghua; Pamar, Prerna; Schnier, Joseph; Singh, Rajbir; Collazo, Destiny; Chang, Miao; Kyeremateng, Yaa; McCormick, Colin; Borghi, Sara; Patel, Shrey; Darawshi, Fares; Barnett, Clea R; Sulaiman, Imran; Kugler, Matthias C; Brosnahan, Shari B; Singh, Shivani; Tsay, Jun-Chieh J; Wu, Benjamin G; Pass, Harvey I; Angel, Luis F; Segal, Leopoldo N; Natalini, Jake G
RATIONALE/BACKGROUND:Lower airway enrichment with oral commensals has been previously associated with grade 3 severe primary graft dysfunction (PGD) after lung transplantation (LT). We aimed to determine whether this dysbiotic signature is present across all PGD severity grades, including milder forms, and whether it is associated with a distinct host inflammatory endotype. METHODS:Lower airway samples from 96 LT recipients with varying degrees of PGD were used to evaluate the lung allograft microbiota via 16S rRNA gene sequencing. Bronchoalveolar lavage (BAL) cytokine concentrations and cell differential percentages were compared across PGD grades. In a subset of samples, we evaluated the lower airway host transcriptome using RNA sequencing methods. RESULTS:Differential analyses demonstrated lower airway enrichment with supraglottic-predominant taxa (SPT) in both moderate and severe PGD. Dirichlet Multinomial Mixtures (DMM) modeling identified two distinct microbial clusters. A greater percentage of subjects with moderate-severe PGD were identified within the dysbiotic cluster (C-SPT) than within the no PGD group (48 and 29%, respectively) though this difference did not reach statistical significance (p=0.06). PGD severity associated with increased BAL neutrophil concentration (p=0.03) and correlated with BAL concentrations of MCP-1/CCL2, IP-10/CXCL10, IL-10, and TNF-α (p<0.05). Furthermore, microbial signatures of dysbiosis correlated with neutrophils, MCP-1/CCL-2, IL-10, and TNF-α (p<0.05). C-SPT exhibited differential expression of TNF, SERPINE1 (PAI-1), MPO, and MMP1 genes and upregulation of MAPK pathways, suggesting that dysbiosis regulates host signaling to promote neutrophilic inflammation. CONCLUSIONS:Lower airway dysbiosis within the lung allograft is associated with a neutrophilic inflammatory endotype, an immune profile commonly recognized as the hallmark for PGD pathogenesis. This data highlights a putative role for lower airway microbial dysbiosis in the pathogenesis of this syndrome.
PMID: 39561864
ISSN: 1557-3117
CID: 5758452

Impaired immune responses in the airways are associated with poor outcome in critically ill COVID-19 patients

Barnett, Clea R; Krolikowski, Kelsey; Postelnicu, Radu; Mukherjee, Vikramjit; Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Duerr, Ralf; Desvignes, Ludovic; Khanna, Kamal; Li, Yonghua; Schluger, Rosemary; Rafeq, Samaan; Collazo, Destiny; Kyeremateng, Yaa; Amoroso, Nancy; Pradhan, Deepak; Das, Sanchita; Evans, Laura; Uyeki, Timothy M; Ghedin, Elodie; Silverman, Gregg J; Segal, Leopoldo N; Brosnahan, Shari B
INTRODUCTION/UNASSIGNED:Mounting evidence indicates that an individual's humoral adaptive immune response plays a critical role in the setting of SARS-CoV-2 infection, and that the efficiency of the response correlates with disease severity. The relationship between the adaptive immune dynamics in the lower airways with those in the systemic circulation, and how these relate to an individual's clinical response to SARS-CoV-2 infection, are less understood and are the focus of this study. MATERIAL AND METHODS/UNASSIGNED:We investigated the adaptive immune response to SARS-CoV-2 in paired samples from the lower airways and blood from 27 critically ill patients during the first wave of the pandemic (median time from symptom onset to intubation 11 days). Measurements included clinical outcomes (mortality), bronchoalveolar lavage fluid (BALF) and blood specimen antibody levels, and BALF viral load. RESULTS/UNASSIGNED:While there was heterogeneity in the levels of the SARS-CoV-2-specific antibodies, we unexpectedly found that some BALF specimens displayed higher levels than the paired concurrent plasma samples, despite the known dilutional effects common in BALF samples. We found that survivors had higher levels of anti-spike, anti-spike-N-terminal domain and anti-spike-receptor-binding domain IgG antibodies in their BALF (p<0.05), while there was no such association with antibody levels in the systemic circulation. DISCUSSION/UNASSIGNED:Our data highlight the critical role of local adaptive immunity in the airways as a key defence mechanism against primary SARS-CoV-2 infection.
PMCID:11228597
PMID: 38978558
ISSN: 2312-0541
CID: 5732242

Longitudinal Lower Airway Microbial Signatures of Acute Cellular Rejection in Lung Transplantation

Natalini, Jake G; Wong, Kendrew K; Nelson, Nathaniel C; Wu, Benjamin G; Rudym, Darya; Lesko, Melissa B; Qayum, Seema; Lewis, Tyler C; Wong, Adrian; Chang, Stephanie H; Chan, Justin C Y; Geraci, Travis C; Li, Yonghua; Wang, Chan; Li, Huilin; Pamar, Prerna; Schnier, Joseph; Mahoney, Ian J; Malik, Tahir; Darawshy, Fares; Sulaiman, Imran; Kugler, Matthias C; Singh, Rajbir; Collazo, Destiny E; Chang, Miao; Patel, Shrey; Kyeremateng, Yaa; McCormick, Colin; Barnett, Clea R; Tsay, Jun-Chieh J; Brosnahan, Shari B; Singh, Shivani; Pass, Harvey I; Angel, Luis F; Segal, Leopoldo N
PMID: 38358857
ISSN: 1535-4970
CID: 5633542

Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease

Sulaiman, Imran; Wu, Benjamin G; Chung, Matthew; Isaacs, Bradley; Tsay, Jun-Chieh J; Holub, Meredith; Barnett, Clea R; Kwok, Benjamin; Kugler, Matthias C; Natalini, Jake G; Singh, Shivani; Li, Yonghua; Schluger, Rosemary; Carpenito, Joseph; Collazo, Destiny; Perez, Luisanny; Kyeremateng, Yaa; Chang, Miao; Campbell, Christina D; Hansbro, Philip M; Oppenheimer, Beno W; Berger, Kenneth I; Goldring, Roberta M; Koralov, Sergei B; Weiden, Michael D; Xiao, Rui; D'Armiento, Jeanine; Clemente, Jose C; Ghedin, Elodie; Segal, Leopoldo N
PMID: 37677136
ISSN: 1535-4970
CID: 5606572

Hedgehog and PDGF Signaling Intersect During Postnatal Lung Development

Yie, Ting-An; Loomis, Cynthia A; Nowatzky, Johannes; Khodadadi-Jamayran, Alireza; Lin, Ziyan; Cammer, Michael; Barnett, Clea; Mezzano, Valeria; Alu, Mark; Novick, Jackson A; Munger, John S; Kugler, Matthias C
Normal lung development critically depends on Hedgehog (HH) and Platelet-derived growth factor (PDGF) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH and PDGF signaling and their impact/convergence on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa and Pdgfra knockouts during secondary alveolar septation. Utilizing a dual signaling reporter, Gli1IZ;PdgfraEGFP
PMID: 36693140
ISSN: 1535-4989
CID: 5419542

Untangling Lower Airway Dysbiosis in Critically-Ill COVID-19 Patients

Barnett, Clea R; Segal, Leopoldo N
PMID: 35696343
ISSN: 1535-4970
CID: 5282522

ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection

Ching, Krystal L; de Vries, Maren; Gago, Juan; Dancel-Manning, Kristen; Sall, Joseph; Rice, William J; Barnett, Clea; Khodadadi-Jamayran, Alireza; Tsirigos, Aristotelis; Liang, Feng-Xia; Thorpe, Lorna E; Shopsin, Bo; Segal, Leopoldo N; Dittmann, Meike; Torres, Victor J; Cadwell, Ken
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.
PMID: 36099266
ISSN: 1545-7885
CID: 5335192

A clinicians' review of the respiratory microbiome

Campbell, Christina D; Barnett, Clea; Sulaiman, Imran
The respiratory microbiome and its impact in health and disease is now well characterised. With the development of next-generation sequencing and the use of other techniques such as metabolomics, the functional impact of microorganisms in different host environments can be elucidated. It is now clear that the respiratory microbiome plays an important role in respiratory disease. In some diseases, such as bronchiectasis, examination of the microbiome can even be used to identify patients at higher risk of poor outcomes. Furthermore, the microbiome can aid in phenotyping. Finally, development of multi-omic analysis has revealed interactions between the host and microbiome in some conditions. This review, although not exhaustive, aims to outline how the microbiome is investigated, the healthy respiratory microbiome and its role in respiratory disease.
PMCID:9584600
PMID: 36338247
ISSN: 1810-6838
CID: 5357002

Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Pérez-Pérez, Lizzette; Shen, Guomiao; Jour, George; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Heguy, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
PMID: 34465900
ISSN: 2058-5276
CID: 4998422

Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Koralov, Sergei; Wu, Benjamin; Yeung, Stephen; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel; Heguy, Adriana; Uyeki, Timothy; Clemente, Jose; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian; Koide, Shohei; Stapleford, Kenneth; Khanna, Kamal; Ghedin, Elodie; Weiden, Michael; Segal, Leopoldo
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:8010736
PMID: 33791687
ISSN: n/a
CID: 4830952