Searched for: person:basuj01
in-biosketch:yes
Hippocampus shapes entorhinal cortical output through a direct feedback circuit
Butola, Tanvi; Hernández-Frausto, Melissa; Blankvoort, Stefan; Flatset, Marcus Sandbukt; Peng, Lulu; Hairston, Ariel; Johnson, Cara Deanna; Elmaleh, Margot; Amilcar, Amanda; Hussain, Fabliha; Clopath, Claudia; Kentros, Clifford; Basu, Jayeeta
Our brains integrate sensory, cognitive and internal state information with memories to extract behavioral relevance. Cortico-hippocampal interactions likely mediate this interplay, but underlying circuit mechanisms remain elusive. Unlike the entorhinal cortex-to-hippocampus pathway, we know little about the organization and function of the hippocampus-to-cortex feedback circuit. Here we report in mice, two functionally distinct parallel hippocampus-to-entorhinal cortex feedback pathways: the canonical disynaptic route via layer 5 and a novel monosynaptic input to layer 2/3. Circuit mapping reveals that hippocampal input predominantly drives excitation in layer 5 but feed-forward inhibition in layer 2/3. Upon repetitive pairing with cortical layer 1 inputs, hippocampal inputs undergo homosynaptic potentiation in layer 5, but induce heterosynaptic plasticity and spike output in layer 2/3. Behaviorally, hippocampal inputs to layer 5 and layer 2/3 support object memory encoding versus recall, respectively. Two-photon imaging during navigation reveals hippocampal suppression reduces spatially tuned cortical axonal activity. We present a model, where hippocampal feedback could iteratively shape ongoing cortical processing.
PMID: 39966537
ISSN: 1546-1726
CID: 5823462
Modeling and correction of protein conformational disease in iPSC-derived neurons through personalized base editing
Konishi, Colin T; Mulaiese, Nancy; Butola, Tanvi; Zhang, Qinkun; Kagan, Dana; Yang, Qiaoyan; Pressler, Mariel; Dirvin, Brooke G; Devinsky, Orrin; Basu, Jayeeta; Long, Chengzu
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in SERPINI1, the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death. We developed HEK293T and induced pluripotent stem cell (iPSC) models of FENIB, harboring a patient-specific pathogenic SERPINI1 variant or stably overexpressing mutant neuroserpin fused to GFP (MUT NS-GFP). Here, we utilized a personalized adenine base editor (ABE)-mediated approach to correct the pathogenic variant efficiently and precisely to restore neuronal dendritic morphology. ABE-treated MUT NS-GFP cells demonstrated reduced inclusion size and number. Using an inducible MUT NS-GFP neuron system, we identified early prevention of toxic protein expression allowed aggregate clearance, while late prevention halted further aggregation. To address several challenges for clinical applications of gene correction, we developed a neuron-specific engineered virus-like particle to optimize neuronal ABE delivery, resulting in higher correction efficiency. Our findings provide a targeted strategy that may treat FENIB and potentially other neurodegenerative diseases due to altered protein conformation such as Alzheimer's and Huntington's diseases.
PMCID:11773622
PMID: 39877004
ISSN: 2162-2531
CID: 5780862
Topography of putative bi-directional interaction between hippocampal sharp-wave ripples and neocortical slow oscillations
Swanson, Rachel A; Chinigò, Elisa; Levenstein, Daniel; Vöröslakos, Mihály; Mousavi, Navid; Wang, Xiao-Jing; Basu, Jayeeta; Buzsáki, György
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across the neocortex and the mechanisms enabling it remains unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with wide-field imaging of the dorsal neocortex, we found spatially and temporally precise bi-directional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability were correlated with UP/DOWN states in the default mode network (DMN), with the highest modulation by the RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN DOWN → UP transitions, whereas large-amplitude SWRs were often followed by DOWN states originating in the RSC. We explain these electrophysiological results with a model in which the HPC and RSC are weakly coupled excitable systems capable of bi-directional perturbation and suggest that the RSC may act as a gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of DOWN states.
PMID: 39874961
ISSN: 1097-4199
CID: 5780762
Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3
Moore, Jason J; Rashid, Shannon K; Bicker, Emmett; Johnson, Cara D; Codrington, Naomi; Chklovskii, Dmitri B; Basu, Jayeeta
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons. We validated the method on sparsely labeled preparations and synthetic data, predicting an optimal labeling density for high experimental throughput and analytical accuracy. Our method detected rapid, local dendritic activity. Dendrites showed robust spatial tuning, similar to soma but with higher activity rates. Across days, apical dendrites remained more stable and outperformed in decoding of the animal's position. Thus, population-level apical and basal dendritic differences may reflect distinct compartment-specific input-output functions and computations in CA3. These tools will facilitate future studies mapping sub-cellular activity and their relation to behavior.
PMCID:11775317
PMID: 39875374
ISSN: 2041-1723
CID: 5780792
Neural circuits for goal-directed navigation across species
Basu, Jayeeta; Nagel, Katherine
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
PMID: 39393938
ISSN: 1878-108x
CID: 5706412
Cortical and thalamic inputs drive distinct hippocampal microcircuits to modulate synchronized activity during development
Robert, Vincent; Butola, Tanvi; Basu, Jayeeta
Synchronized activity, a hallmark of hippocampal network dynamics, appears early during development. Whether extrinsic inputs drive such activity remains unknown. In this issue of Neuron, Leprince et al.1 show that synchronized activity, while modulated by both cortical and thalamic inputs ex vivo, depends solely on cortical inputs in vivo.
PMID: 36924761
ISSN: 1097-4199
CID: 5448972
Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit
Bilash, Olesia M; Chavlis, Spyridon; Johnson, Cara D; Poirazi, Panayiota; Basu, Jayeeta
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
PMID: 36640337
ISSN: 2211-1247
CID: 5434452
Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease
Hernández-Frausto, Melissa; Bilash, Olesia M; Masurkar, Arjun V; Basu, Jayeeta
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
PMCID:10570439
PMID: 37841892
ISSN: 1662-5110
CID: 5605472
Task-selective place cells show behaviorally driven dynamics during learning and stability during memory recall
Zemla, Roland; Moore, Jason J; Hopkins, Maya D; Basu, Jayeeta
Decades of work propose that hippocampal activity supports internal representation of learned experiences and contexts, allowing individuals to form long-term memories and quickly adapt behavior to changing environments. However, recent studies insinuate hippocampal representations can drift over time, raising the question: how could the hippocampus hold stable memories when activity of its neuronal maps fluctuates? We hypothesized that task-dependent hippocampal maps set by learning rules and structured attention stabilize as a function of behavioral performance. To test this, we imaged hippocampal CA1 pyramidal neurons during learning and memory recall phases of a new task where mice use odor cues to navigate between two reward zones. Across learning, both orthogonal and overlapping task-dependent place maps form rapidly, discriminating trial context with strong correlation to behavioral performance. Once formed, task-selective place maps show increased long-term stability during memory recall phases. We conclude that memory demand and attention stabilize hippocampal activity to maintain contextually rich spatial representations.
PMID: 36417882
ISSN: 2211-1247
CID: 5382872
Assessing Local and Branch-specific Activity in Dendrites
Moore, Jason J; Robert, Vincent; Rashid, Shannon K; Basu, Jayeeta
Dendrites are elaborate neural processes which integrate inputs from various sources in space and time. While decades of work have suggested an independent role for dendrites in driving nonlinear computations for the cell, only recently have technological advances enabled us to capture the variety of activity in dendrites and their coupling dynamics with the soma. Under certain circumstances, activity generated in a given dendritic branch remains isolated, such that the soma or even sister dendrites are not privy to these localized signals. Such branch-specific activity could radically increase the capacity and flexibility of coding for the cell as a whole. Here, we discuss these forms of localized and branch-specific activity, their functional relevance in plasticity and behavior, and their supporting biophysical and circuit-level mechanisms. We conclude by showcasing electrical and optical approaches in hippocampal area CA3, using original experimental data to discuss experimental and analytical methodology and key considerations to take when investigating the functional relevance of independent dendritic activity.
PMID: 34756987
ISSN: 1873-7544
CID: 5050502