Try a new search

Format these results:

Searched for:



Total Results:


Development and Validation of a Machine Learning-Based Decision Support Tool for Residency Applicant Screening and Review

Burk-Rafel, Jesse; Reinstein, Ilan; Feng, James; Kim, Moosun Brad; Miller, Louis H; Cocks, Patrick M; Marin, Marina; Aphinyanaphongs, Yindalon
PURPOSE:Residency programs face overwhelming numbers of residency applications, limiting holistic review. Artificial intelligence techniques have been proposed to address this challenge but have not been created. Here, a multidisciplinary team sought to develop and validate a machine learning (ML)-based decision support tool (DST) for residency applicant screening and review. METHOD:Categorical applicant data from the 2018, 2019, and 2020 residency application cycles (n = 8,243 applicants) at one large internal medicine residency program were downloaded from the Electronic Residency Application Service and linked to the outcome measure: interview invitation by human reviewers (n = 1,235 invites). An ML model using gradient boosting was designed using training data (80% of applicants) with over 60 applicant features (e.g., demographics, experiences, academic metrics). Model performance was validated on held-out data (20% of applicants). Sensitivity analysis was conducted without United States Medical Licensing Examination (USMLE) scores. An interactive DST incorporating the ML model was designed and deployed that provided applicant- and cohort-level visualizations. RESULTS:The ML model areas under the receiver operating characteristic and precision recall curves were 0.95 and 0.76, respectively; these changed to 0.94 and 0.72, respectively, with removal of USMLE scores. Applicants' medical school information was an important driver of predictions-which had face validity based on the local selection process-but numerous predictors contributed. Program directors used the DST in the 2021 application cycle to select 20 applicants for interview that had been initially screened out during human review. CONCLUSIONS:The authors developed and validated an ML algorithm for predicting residency interview offers from numerous application elements with high performance-even when USMLE scores were removed. Model deployment in a DST highlighted its potential for screening candidates and helped quantify and mitigate biases existing in the selection process. Further work will incorporate unstructured textual data through natural language processing methods.
PMID: 34348383
ISSN: 1938-808x
CID: 5050022

The AMA Graduate Profile: Tracking Medical School Graduates Into Practice

Burk-Rafel, Jesse; Marin, Marina; Triola, Marc; Fancher, Tonya; Ko, Michelle; Mejicano, George; Skochelak, Susan; Santen, Sally A; Richardson, Judee
PMID: 34705676
ISSN: 1938-808x
CID: 5042522

Population screening for variant Creutzfeldt-Jakob disease using a novel blood test: diagnostic accuracy and feasibility study

Jackson, Graham S; Burk-Rafel, Jesse; Edgeworth, Julie Ann; Sicilia, Anita; Abdilahi, Sabah; Korteweg, Justine; Mackey, Jonathan; Thomas, Claire; Wang, Guosu; Schott, Jonathan M; Mummery, Catherine; Chinnery, Patrick F; Mead, Simon; Collinge, John
IMPORTANCE/OBJECTIVE:Our study indicates a prototype blood-based variant Creutzfeldt-Jakob disease (vCJD) assay has sufficient sensitivity and specificity to justify a large study comparing vCJD prevalence in the United Kingdom with a bovine spongiform encephalopathy-unexposed population. In a clinical diagnostic capacity, the assay's likelihood ratios dramatically change an individual's pretest disease odds to posttest probabilities and can confirm vCJD infection. OBJECTIVES/OBJECTIVE:To determine the diagnostic accuracy of a prototype blood test for vCJD and hence its suitability for clinical use and for screening prion-exposed populations. DESIGN, SETTING, AND PARTICIPANTS/METHODS:Retrospective, cross-sectional diagnostic study of blood samples from national blood collection and prion disease centers in the United States and United Kingdom. Anonymized samples were representative of the US blood donor population (n = 5000), healthy UK donors (n = 200), patients with nonprion neurodegenerative diseases (n = 352), patients in whom a prion disease diagnosis was likely (n = 105), and patients with confirmed vCJD (n = 10). MAIN OUTCOME AND MEASURE/METHODS:Presence of vCJD infection determined by a prototype test (now in clinical diagnostic use) that captures, enriches, and detects disease-associated prion protein from whole blood using stainless steel powder. RESULTS:The assay's specificity among the presumed negative American donor samples was 100% (95% CI, 99.93%-100%) and was confirmed in a healthy UK cohort (100% specificity; 95% CI, 98.2%-100%). Of potentially cross-reactive blood samples from patients with nonprion neurodegenerative diseases, no samples tested positive (100% specificity; 95% CI, 98.9%-100%). Among National Prion Clinic referrals in whom a prion disease diagnosis was likely, 2 patients with sporadic CJD tested positive (98.1% specificity; 95% CI, 93.3%-99.8%). Finally, we reconfirmed but could not refine our previous sensitivity estimate in a small blind panel of samples from unaffected individuals and patients with vCJD (70% sensitivity; 95% CI, 34.8%-93.3%). CONCLUSIONS AND RELEVANCE/CONCLUSIONS:In conjunction with the assay's established high sensitivity (71.4%; 95% CI, 47.8%-88.7%), the extremely high specificity supports using the assay to screen for vCJD infection in prion-exposed populations. Additionally, the lack of cross-reactivity and false positives in a range of nonprion neurodegenerative diseases supports the use of the assay in patient diagnosis.
PMID: 24590363
ISSN: 2168-6157
CID: 4372952

Reimagining the Transition to Residency: A Trainee Call to Accelerated Action

Lin, Grant L; Guerra, Sylvia; Patel, Juhee; Burk-Rafel, Jesse
The transition from medical student to resident is a pivotal step in the medical education continuum. For applicants, successfully obtaining a residency position is the actualization of a dream after years of training and has life-changing professional and financial implications. These high stakes contribute to a residency application and Match process in the United States that is increasingly complex and dysfunctional, and that does not effectively serve applicants, residency programs, or the public good. In July 2020, the Coalition for Physician Accountability (Coalition) formed the Undergraduate Medical Education-Graduate Medical Education Review Committee (UGRC) to critically assess the overall transition to residency and offer recommendations to solve the growing challenges in the system. In this Invited Commentary, the authors reflect on their experience as the trainee representatives on the UGRC. They emphasize the importance of trainee advocacy in medical education change efforts; reflect on opportunities, concerns, and tensions with the final UGRC recommendations (released in August 2021); discuss factors that may constrain implementation; and call for the medical education community-and the Coalition member organizations in particular-to accelerate fully implementing the UGRC recommendations. By seizing the momentum created by the UGRC, the medical education community can create a reimagined transition to residency that reshapes its approach to training a more diverse, competent, and growth-oriented physician workforce.
PMID: 35263298
ISSN: 1938-808x
CID: 5220952

Toward (More) Valid Comparison of Residency Applicants' Grades: Cluster Analysis of Clerkship Grade Distributions Across 135 U.S. MD-granting Medical Schools

Burk-Rafel, Jesse; Reinstein, Ilan; Park, Yoon Soo
PMID: 36287686
ISSN: 1938-808x
CID: 5358022

Medical Student Well-Being While Studying for the USMLE Step 1: The Impact of a Goal Score

Rashid, Hanin; Runyon, Christopher; Burk-Rafel, Jesse; Cuddy, Monica M; Dyrbye, Liselotte; Arnhart, Katie; Luciw-Dubas, Ulana; Mechaber, Hilit F; Lieberman, Steve; Paniagua, Miguel
PMID: 36287705
ISSN: 1938-808x
CID: 5358032

Identifying Meaningful Patterns of Internal Medicine Clerkship Grading Distributions: Application of Data Science Techniques Across 135 U.S. Medical Schools

Burk-Rafel, Jesse; Reinstein, Ilan; Park, Yoon Soo
PROBLEM/OBJECTIVE:Residency program directors use clerkship grades for high-stakes selection decisions despite substantial variability in grading systems and distributions. The authors apply clustering techniques from data science to identify groups of schools for which grading distributions were statistically similar in the internal medicine clerkship. APPROACH/METHODS:Grading systems (e.g., honors/pass/fail) and distributions (i.e., percent of students in each grade tier) were tabulated for the internal medicine clerkship at U.S. MD-granting medical schools by manually reviewing Medical Student Performance Evaluations (MSPEs) in the 2019 and 2020 residency application cycles. Grading distributions were analyzed using k-means cluster analysis, with the optimal number of clusters selected using model fit indices. OUTCOMES/RESULTS:Among the 145 medical schools with available MSPE data, 64 distinct grading systems were reported. Among the 135 schools reporting a grading distribution, the median percent of students receiving the highest and lowest tier grade was 32% (range: 2%-66%) and 2% (range: 0%-91%), respectively. Four clusters was the most optimal solution (η2 = 0.8): cluster 1 (45% [highest grade tier]-45% [middle tier]-10% [lowest tier], n = 64 [47%] schools), cluster 2 (25%-30%-45%, n = 40 [30%] schools), cluster 3 (20%-75%-5%, n = 25 [19%] schools), and cluster 4 (15%-25%-25%-25%-10%, n = 6 [4%] schools). The findings suggest internal medicine clerkship grading systems may be more comparable across institutions than previously thought. NEXT STEPS/CONCLUSIONS:The authors will prospectively review reported clerkship grading approaches across additional specialties and are conducting a mixed-methods analysis, incorporating a sequential explanatory model, to interview stakeholder groups on the use of the patterns identified.
PMID: 36484555
ISSN: 1938-808x
CID: 5378842

Development and Validation of a Machine Learning Model for Automated Assessment of Resident Clinical Reasoning Documentation

Schaye, Verity; Guzman, Benedict; Burk-Rafel, Jesse; Marin, Marina; Reinstein, Ilan; Kudlowitz, David; Miller, Louis; Chun, Jonathan; Aphinyanaphongs, Yindalon
BACKGROUND:Residents receive infrequent feedback on their clinical reasoning (CR) documentation. While machine learning (ML) and natural language processing (NLP) have been used to assess CR documentation in standardized cases, no studies have described similar use in the clinical environment. OBJECTIVE:The authors developed and validated using Kane's framework a ML model for automated assessment of CR documentation quality in residents' admission notes. DESIGN, PARTICIPANTS, MAIN MEASURES/UNASSIGNED:Internal medicine residents' and subspecialty fellows' admission notes at one medical center from July 2014 to March 2020 were extracted from the electronic health record. Using a validated CR documentation rubric, the authors rated 414 notes for the ML development dataset. Notes were truncated to isolate the relevant portion; an NLP software (cTAKES) extracted disease/disorder named entities and human review generated CR terms. The final model had three input variables and classified notes as demonstrating low- or high-quality CR documentation. The ML model was applied to a retrospective dataset (9591 notes) for human validation and data analysis. Reliability between human and ML ratings was assessed on 205 of these notes with Cohen's kappa. CR documentation quality by post-graduate year (PGY) was evaluated by the Mantel-Haenszel test of trend. KEY RESULTS/RESULTS:The top-performing logistic regression model had an area under the receiver operating characteristic curve of 0.88, a positive predictive value of 0.68, and an accuracy of 0.79. Cohen's kappa was 0.67. Of the 9591 notes, 31.1% demonstrated high-quality CR documentation; quality increased from 27.0% (PGY1) to 31.0% (PGY2) to 39.0% (PGY3) (p < .001 for trend). Validity evidence was collected in each domain of Kane's framework (scoring, generalization, extrapolation, and implications). CONCLUSIONS:The authors developed and validated a high-performing ML model that classifies CR documentation quality in resident admission notes in the clinical environment-a novel application of ML and NLP with many potential use cases.
PMID: 35710676
ISSN: 1525-1497
CID: 5277902

Development of a Clinical Reasoning Documentation Assessment Tool for Resident and Fellow Admission Notes: a Shared Mental Model for Feedback

Schaye, Verity; Miller, Louis; Kudlowitz, David; Chun, Jonathan; Burk-Rafel, Jesse; Cocks, Patrick; Guzman, Benedict; Aphinyanaphongs, Yindalon; Marin, Marina
BACKGROUND:Residents and fellows receive little feedback on their clinical reasoning documentation. Barriers include lack of a shared mental model and variability in the reliability and validity of existing assessment tools. Of the existing tools, the IDEA assessment tool includes a robust assessment of clinical reasoning documentation focusing on four elements (interpretive summary, differential diagnosis, explanation of reasoning for lead and alternative diagnoses) but lacks descriptive anchors threatening its reliability. OBJECTIVE:Our goal was to develop a valid and reliable assessment tool for clinical reasoning documentation building off the IDEA assessment tool. DESIGN, PARTICIPANTS, AND MAIN MEASURES/UNASSIGNED:The Revised-IDEA assessment tool was developed by four clinician educators through iterative review of admission notes written by medicine residents and fellows and subsequently piloted with additional faculty to ensure response process validity. A random sample of 252 notes from July 2014 to June 2017 written by 30 trainees across several chief complaints was rated. Three raters rated 20% of the notes to demonstrate internal structure validity. A quality cut-off score was determined using Hofstee standard setting. KEY RESULTS/RESULTS:The Revised-IDEA assessment tool includes the same four domains as the IDEA assessment tool with more detailed descriptive prompts, new Likert scale anchors, and a score range of 0-10. Intraclass correlation was high for the notes rated by three raters, 0.84 (95% CI 0.74-0.90). Scores ≥6 were determined to demonstrate high-quality clinical reasoning documentation. Only 53% of notes (134/252) were high-quality. CONCLUSIONS:The Revised-IDEA assessment tool is reliable and easy to use for feedback on clinical reasoning documentation in resident and fellow admission notes with descriptive anchors that facilitate a shared mental model for feedback.
PMID: 33945113
ISSN: 1525-1497
CID: 4866222

Systems-Level Reforms to the US Resident Selection Process: A Scoping Review

Zastrow, Ryley K; Burk-Rafel, Jesse; London, Daniel A
Background/UNASSIGNED:Calls to reform the US resident selection process are growing, given increasing competition and inefficiencies of the current system. Though numerous reforms have been proposed, they have not been comprehensively cataloged. Objective/UNASSIGNED:This scoping review was conducted to characterize and categorize literature proposing systems-level reforms to the resident selection process. Methods/UNASSIGNED:Following Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines, searches of Embase, MEDLINE, Scopus, and Web of Science databases were performed for references published from January 2005 to February 2020. Articles were included if they proposed reforms that were applicable or generalizable to all applicants, medical schools, or residency programs. An inductive approach to qualitative content analysis was used to generate codes and higher-order categories. Results/UNASSIGNED:Of 10 407 unique references screened, 116 met our inclusion criteria. Qualitative analysis generated 34 codes that were grouped into 14 categories according to the broad stages of resident selection: application submission, application review, interviews, and the Match. The most commonly proposed reforms were implementation of an application cap (n = 28), creation of a standardized program database (n = 21), utilization of standardized letters of evaluation (n = 20), and pre-interview screening (n = 13). Conclusions/UNASSIGNED:This scoping review collated and categorized proposed reforms to the resident selection process, developing a common language and framework to facilitate national conversations and change.
PMID: 34178261
ISSN: 1949-8357
CID: 4964962