Searched for: person:cadwek01
in-biosketch:yes
Rewilding catalyzes maturation of the humoral immune system
Chen, Ying-Han; Zaldana, Kimberly; Yeung, Frank; Vujkovic-Cvijin, Ivan; Downie, Alexander E; Lin, Jian-Da; Yang, Yi; Herrmann, Christin; Oyesola, Oyebola; Rozenberg, Felix; Schwartz, Robert E; Kim, David; Tio, Kurt; Belkaid, Yasmine; Loke, P'ng; Graham, Andrea L; Koralov, Sergei B; Cadwell, Ken
Inbred mice used for biomedical research display an underdeveloped immune system compared with adult humans, which is attributed in part to the artificial laboratory environment. Despite representing a central component of adaptive immunity, the impact of the laboratory environment on the B cell compartment has not been investigated in detail. Here, we performed an in-depth examination of B cells following rewilding, the controlled release of inbred laboratory mice into an outdoor enclosure. In rewilded mice, we observed B cells in circulation with increased signs of maturation, alongside heightened germinal center responses within secondary lymphoid organs. Rewilding also expanded B cells in the gut, which was accompanied by elevated systemic levels of immunoglobulin G (IgG) and IgM antibodies reactive to the microbiota. Our findings indicate that exposing laboratory mice to a more natural environment enhances B cell development to better reflect the immune system of free-living mammals.
PMCID:11887799
PMID: 40053586
ISSN: 2375-2548
CID: 5809942
Tofacitinib Uptake by Patient-Derived Intestinal Organoids Predicts Individual Clinical Responsiveness
Jang, Kyung Ku; Hudesman, David; Jones, Drew R; Loke, P'ng; Axelrad, Jordan E; Cadwell, Ken; ,
PMID: 39094749
ISSN: 1528-0012
CID: 5731612
SARS-CoV-2 infection predisposes patients to coinfection with Staphylococcus aureus
Lubkin, Ashira; Bernard-Raichon, Lucie; DuMont, Ashley L; Valero Jimenez, Ana Mayela; Putzel, Gregory G; Gago, Juan; Zwack, Erin E; Olusanya, Olufolakemi; Boguslawski, Kristina M; Dallari, Simone; Dyzenhaus, Sophie; Herrmann, Christin; Ilmain, Juliana K; Isom, Georgia L; Pawline, Miranda; Perault, Andrew I; Perelman, Sofya; Sause, William E; Shahi, Ifrah; St John, Amelia; Tierce, Rebecca; Zheng, Xuhui; Zhou, Chunyi; Noval, Maria G; O'Keeffe, Anna; Podkowik, Magda; Gonzales, Sandra; Inglima, Kenneth; Desvignes, Ludovic; Hochman, Sarah E; Stapleford, Kenneth A; Thorpe, Lorna E; Pironti, Alejandro; Shopsin, Bo; Cadwell, Ken; Dittmann, Meike; Torres, Victor J
UNLABELLED:isolates with low intrinsic virulence. IMPORTANCE/OBJECTIVE:infection.
PMCID:11323729
PMID: 39037272
ISSN: 2150-7511
CID: 5695982
Genetic and environmental interactions contribute to immune variation in rewilded mice
Oyesola, Oyebola; Downie, Alexander E; Howard, Nina; Barre, Ramya S; Kiwanuka, Kasalina; Zaldana, Kimberly; Chen, Ying-Han; Menezes, Arthur; Lee, Soo Ching; Devlin, Joseph; Mondragón-Palomino, Octavio; Souza, Camila Oliveira Silva; Herrmann, Christin; Koralov, Sergei B; Cadwell, Ken; Graham, Andrea L; Loke, P'ng
The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.
PMID: 38877178
ISSN: 1529-2916
CID: 5669602
Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation
Sargsian, Shushan; Mondragón-Palomino, Octavio; Lejeune, Alannah; Ercelen, Defne; Jin, Wen-Bing; Varghese, Alan; Lim, Yvonne A L; Guo, Chun-Jun; Loke, P'ng; Cadwell, Ken
BACKGROUND:Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS:Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION/CONCLUSIONS:We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.
PMID: 38730492
ISSN: 2049-2618
CID: 5656072
SHORT CHAIN FATTY ACIDS MITIGATE OSTEOCLAST-MEDIATED ARTHRITIC BONE REMODELLING
Yang, Katharine Lu; Mullins, Briana J; Lejeune, Alannah; Ivanova, Ellie; Shin, Jong; Bajwa, Sofia; Possemato, Richard; Cadwell, Ken; Scher, Jose U; Koralov, Sergei B
OBJECTIVE:To study the effects of Short Chain Fatty Acids (SCFAs) on arthritic bone remodeling. METHODS:CD4Cre mice, with SCFA supplemented water. We also performed in vitro osteoclast differentiation assays in the presence of serum-level SCFAs to evaluate the direct impact of these microbial metabolites on maturation and function of osteoclasts. We further characterized the molecular mechanism of SCFAs by transcriptional analysis. RESULTS:CD4Cre mice. Further interrogation revealed that bone marrow derived OCPs from diseased mice expressed a higher level of SCFA receptors than that of control mice and that the progenitor cells in the bone marrow of SCFA-treated mice presented a modified transcriptomic landscape, suggesting a direct impact of SCFAs on bone marrow progenitors in the context of osteoporosis. CONCLUSION/CONCLUSIONS:We demonstrated how gut microbiota-derived SCFAs can regulate distal pathology, i.e., osteoporosis, and identified a potential therapeutic option for restoring bone density in rheumatic disease, further highlighting the critical role of the gut-bone axis in these disorders.
PMID: 37994265
ISSN: 2326-5205
CID: 5608662
S1PR1 inhibition induces proapoptotic signaling in T cells and limits humoral responses within lymph nodes
Dixit, Dhaval; Hallisey, Victoria M; Zhu, Ethan Ys; Okuniewska, Martyna; Cadwell, Ken; Chipuk, Jerry E; Axelrad, Jordan E; Schwab, Susan R
Effective immunity requires a large, diverse naive T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we addressed how S1P enables T cell survival and the implications for patients treated with S1PR1 antagonists. We found that S1PR1 limited apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization were required to prevent this proapoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naive T cells limited B cell responses. Our findings highlighted an effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggested both limitations and additional uses of this important class of drugs.
PMID: 38194271
ISSN: 1558-8238
CID: 5635202
Cytokine signature in convalescent SARS-CoV-2 patients with inflammatory bowel disease receiving vedolizumab
Dallari, Simone; Martinez Pazos, Vicky; Munoz Eusse, Juan; Wellens, Judith; Thompson, Craig; Colombel, Jean-Frederic; Satsangi, Jack; Cadwell, Ken; Wong, Serre-Yu; ,
While differential antibody responses SARS-CoV-2 in patients with inflammatory bowel disease (IBD) receiving infliximab and vedolizumab are well-characterized, the immune pathways underlying these differences remain unknown. Prior to COVID-19 vaccine development, we screened 235 patients with IBD receiving biological therapy for antibodies to SARS-CoV-2 and measured serum cytokines. In seropositive patients, we prospectively collected clinical data. We found a cytokine signature in patients receiving vedolizumab who are seropositive compared with seronegative for SARS-CoV-2 antibodies that may be linked to repeated SARS-CoV-2 infections. However, there were no differences between seropositive and seronegative patients receiving infliximab. In this single-center cohort of patients with IBD with anti-SARS-CoV-2 antibodies at the onset of the COVID-19 pandemic, and therefore without influence of vaccination, there is a cytokine signature in patients receiving vedolizumab but not infliximab. These findings lay the groundwork for further studies on immune consequences of viral infection in patients with IBD, which is postulated to evolve from aberrant host-microbe responses.
PMCID:10761911
PMID: 38168138
ISSN: 2045-2322
CID: 5626042
Assessing immune phenotypes using simple proxy measures: promise and limitations
Downie, Alexander E; Barre, Ramya S; Robinson, Annie; Yang, Jennie; Chen, Ying-Han; Lin, Jian-Da; Oyesola, Oyebola; Yeung, Frank; Cadwell, Ken; Loke, P'ng; Graham, Andrea L
The study of immune phenotypes in wild animals is beset by numerous methodological challenges, with assessment of detailed aspects of phenotype difficult to impossible. This constrains the ability of disease ecologists and ecoimmunologists to describe immune variation and evaluate hypotheses explaining said variation. The development of simple approaches that allow characterization of immune variation across many populations and species would be a significant advance. Here we explore whether serum protein concentrations and coarse-grained white blood cell profiles, immune quantities that can easily be assayed in many species, can predict, and therefore serve as proxies for, lymphocyte composition properties. We do this in rewilded laboratory mice, which combine the benefits of immune phenotyping of lab mice with the natural context and immune variation found in the wild. We find that easily assayed immune quantities are largely ineffective as predictors of lymphocyte composition, either on their own or with other covariates. Immunoglobulin G (IgG) concentration and neutrophil-lymphocyte ratio show the most promise as indicators of other immune traits, but their explanatory power is limited. Our results prescribe caution in inferring immune phenotypes beyond what is directly measured, but they do also highlight some potential paths forward for the development of proxy measures employable by ecoimmunologists.
PMCID:11264049
PMID: 39045514
ISSN: 2754-2483
CID: 5723632
Spatiotemporal-social association predicts immunological similarity in rewilded mice
Downie, Alexander E; Oyesola, Oyebola; Barre, Ramya S; Caudron, Quentin; Chen, Ying-Han; Dennis, Emily J; Garnier, Romain; Kiwanuka, Kasalina; Menezes, Arthur; Navarrete, Daniel J; Mondragón-Palomino, Octavio; Saunders, Jesse B; Tokita, Christopher K; Zaldana, Kimberly; Cadwell, Ken; Loke, P'ng; Graham, Andrea L
Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.
PMCID:10745690
PMID: 38134275
ISSN: 2375-2548
CID: 5611862