Try a new search

Format these results:

Searched for:

person:cardot01

in-biosketch:yes

Total Results:

128


KATP channel trafficking

Yang, Hua-Qian; Echeverry, Fabio A; ElSheikh, Assmaa; Gando, Ivan; Anez Arredondo, Sophia; Samper, Natalie; Cardozo, Timothy; Delmar, Mario; Shyng, Show-Ling; Coetzee, William A
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
PMID: 35508187
ISSN: 1522-1563
CID: 5216232

Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription

Lee, Sang Bae; Garofano, Luciano; Ko, Aram; D'Angelo, Fulvio; Frangaj, Brulinda; Sommer, Danika; Gan, Qiwen; Kim, KyeongJin; Cardozo, Timothy; Iavarone, Antonio; Lasorella, Anna
Tissue-specific transcriptional activity is silenced in mitotic cells but it remains unclear whether the mitotic regulatory machinery interacts with tissue-specific transcriptional programs. We show that such cross-talk involves the controlled interaction between core subunits of the anaphase-promoting complex (APC) and the ID2 substrate. The N-terminus of ID2 is independently and structurally compatible with a pocket composed of core APC/C subunits that may optimally orient ID2 onto the APCCDH1 complex. Phosphorylation of serine-5 by CDK1 prevented the association of ID2 with core APC, impaired ubiquitylation and stabilized ID2 protein at the mitosis-G1 transition leading to inhibition of basic Helix-Loop-Helix (bHLH)-mediated transcription. The serine-5 phospho-mimetic mutant of ID2 that inefficiently bound core APC remained stable during mitosis, delayed exit from mitosis and reloading of bHLH transcription factors on chromatin. It also locked cells into a "mitotic stem cell" transcriptional state resembling the pluripotent program of embryonic stem cells. The substrates of APCCDH1 SKP2 and Cyclin B1 share with ID2 the phosphorylation-dependent, D-box-independent interaction with core APC. These results reveal a new layer of control of the mechanism by which substrates are recognized by APC.
PMCID:9018835
PMID: 35440621
ISSN: 2041-1723
CID: 5216872

Autoantibody:Autoantigen Competitor Decoys: Application to Cardiac Phenotypes

Cardozo, Timothy; Cardozo, Lila; Boutjdir, Mohamed
Autoimmune diseases are often associated with autoantibodies that abnormally target self-antigens (autoantigens). An intuitive therapeutic strategy for diseases caused by aAbs is to design decoys, or soluble molecules that target the antigen combining site of these aAbs, thereby blocking binding of aAb to self-antigen and subsequent tissue damage. Here, we review the known decoy molecules of these types, discuss newer technological opportunities afforded by monoclonal antibody and structural biology advances, and discuss the challenges to this approach. Recent opportunities relevant to this approach for cardiac phenotypes, specifically Ro-associated long QT syndrome, are discussed.
PMCID:8832015
PMID: 35154130
ISSN: 1664-3224
CID: 5167312

Anti-V2 antibodies virus vulnerability revealed by envelope V1 deletion in HIV vaccine candidates

Silva de Castro, Isabela; Gorini, Giacomo; Mason, Rosemarie; Gorman, Jason; Bissa, Massimiliano; Rahman, Mohammad A; Arakelyan, Anush; Kalisz, Irene; Whitney, Stephen; Becerra-Flores, Manuel; Ni, Eric; Peachman, Kristina; Trinh, Hung V; Read, Michael; Liu, Mei-Hue; Van Ryk, Donald; Paquin-Proulx, Dominic; Shubin, Zhanna; Tuyishime, Marina; Peele, Jennifer; Ahmadi, Mohammed S; Verardi, Raffaello; Hill, Juliane; Beddall, Margaret; Nguyen, Richard; Stamos, James D; Fujikawa, Dai; Min, Susie; Schifanella, Luca; Vaccari, Monica; Galli, Veronica; Doster, Melvin N; Liyanage, Namal P M; Sarkis, Sarkis; Caccuri, Francesca; LaBranche, Celia; Montefiori, David C; Tomaras, Georgia D; Shen, Xiaoying; Rosati, Margherita; Felber, Barbara K; Pavlakis, George N; Venzon, David J; Magnanelli, William; Breed, Matthew; Kramer, Josh; Keele, Brandon F; Eller, Michael A; Cicala, Claudia; Arthos, James; Ferrari, Guido; Margolis, Leonid; Robert-Guroff, Marjorie; Kwong, Peter D; Roederer, Mario; Rao, Mangala; Cardozo, Timothy J; Franchini, Genoveffa
The efficacy of ALVAC-based HIV and SIV vaccines in humans and macaques correlates with antibodies to envelope variable region 2 (V2). We show here that vaccine-induced antibodies to SIV variable region 1 (V1) inhibit anti-V2 antibody-mediated cytotoxicity and reverse their ability to block V2 peptide interaction with the α4β7 integrin. SIV vaccines engineered to delete V1 and favor an α helix, rather than a β sheet V2 conformation, induced V2-specific ADCC correlating with decreased risk of SIV acquisition. Removal of V1 from the HIV-1 clade A/E A244 envelope resulted in decreased binding to antibodies recognizing V2 in the β sheet conformation. Thus, deletion of V1 in HIV envelope immunogens may improve antibody responses to V2 virus vulnerability sites and increase the efficacy of HIV vaccine candidates.
PMCID:7847973
PMID: 33554060
ISSN: 2589-0042
CID: 4799712

Biophysical Compatibility of a Heterotrimeric Tyrosinase-TYRP1-TYRP2 Metalloenzyme Complex

Lavinda, Olga; Manga, Prashiela; Orlow, Seth J; Cardozo, Timothy
Tyrosinase (TYR) is a copper-containing monooxygenase central to the function of melanocytes. Alterations in its expression or activity contribute to variations in skin, hair and eye color, and underlie a variety of pathogenic pigmentary phenotypes, including several forms of oculocutaneous albinism (OCA). Many of these phenotypes are linked to individual missense mutations causing single nucleotide variants and polymorphisms (SNVs) in TYR. We previously showed that two TYR homologues, TYRP1 and TYRP2, modulate TYR activity and stabilize the TYR protein. Accordingly, to investigate whether TYR, TYRP1, and TYRP2 are biophysically compatible with various heterocomplexes, we computationally docked a high-quality 3D model of TYR to the crystal structure of TYRP1 and to a high-quality 3D model of TYRP2. Remarkably, the resulting TYR-TYRP1 heterodimer was complementary in structure and energy with the TYR-TYRP2 heterodimer, with TYRP1 and TYRP2 docking to different adjacent surfaces on TYR that apposed a third realistic protein interface between TYRP1-TYRP2. Hence, the 3D models are compatible with a heterotrimeric TYR-TYRP1-TYRP2 complex. In addition, this heterotrimeric TYR-TYRP1-TYRP2 positioned the C-terminus of each folded enzymatic domain in an ideal position to allow their C-terminal transmembrane helices to form a putative membrane embedded three-helix bundle. Finally, pathogenic TYR mutations causing OCA1A, which also destabilize TYR biochemically, cluster on an unoccupied protein interface at the periphery of the heterotrimeric complex, suggesting that this may be a docking site for OCA2, an anion channel. Pathogenic OCA2 mutations result in similar phenotypes to those produced by OCA1A TYR mutations. While this complex may be difficult to detect in vitro, due to the complex environment of the vertebrate cellular membranous system, our results support the existence of a heterotrimeric complex in melanogenesis.
PMCID:8114058
PMID: 33995009
ISSN: 1663-9812
CID: 4876532

Informed consent disclosure to vaccine trial subjects of risk of COVID-19 vaccines worsening clinical disease

Cardozo, Timothy; Veazey, Ronald
AIMS OF THE STUDY/OBJECTIVE:Patient comprehension is a critical part of meeting medical ethics standards of informed consent in study designs. The aim of the study was to determine if sufficient literature exists to require clinicians to disclose the specific risk that COVID-19 vaccines could worsen disease upon exposure to challenge or circulating virus. METHODS USED TO CONDUCT THE STUDY/UNASSIGNED:Published literature was reviewed to identify preclinical and clinical evidence that COVID-19 vaccines could worsen disease upon exposure to challenge or circulating virus. Clinical trial protocols for COVID-19 vaccines were reviewed to determine if risks were properly disclosed. RESULTS OF THE STUDY/UNASSIGNED:COVID-19 vaccines designed to elicit neutralizing antibodies may sensitize vaccine recipients to more severe disease than if they were not vaccinated. Vaccines for SARS, MERS and RSV have never been approved, and the data generated in the development and testing of these vaccines suggest a serious mechanistic concern: that vaccines designed empirically using the traditional approach (consisting of the unmodified or minimally modified coronavirus viral spike to elicit neutralizing antibodies), be they composed of protein, viral vector, DNA or RNA and irrespective of delivery method, may worsen COVID-19 disease via antibody-dependent enhancement (ADE). This risk is sufficiently obscured in clinical trial protocols and consent forms for ongoing COVID-19 vaccine trials that adequate patient comprehension of this risk is unlikely to occur, obviating truly informed consent by subjects in these trials. CONCLUSIONS DRAWN FROM THE STUDY AND CLINICAL IMPLICATIONS/UNASSIGNED:The specific and significant COVID-19 risk of ADE should have been and should be prominently and independently disclosed to research subjects currently in vaccine trials, as well as those being recruited for the trials and future patients after vaccine approval, in order to meet the medical ethics standard of patient comprehension for informed consent.
PMCID:7645850
PMID: 33113270
ISSN: 1742-1241
CID: 4661142

Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR

Vasudevan, Deepika; Neuman, Sarah D; Yang, Amy; Lough, Lea; Brown, Brian; Bashirullah, Arash; Cardozo, Timothy; Ryoo, Hyung Don
The Integrated Stress Response (ISR) helps metazoan cells adapt to cellular stress by limiting the availability of initiator methionyl-tRNA for translation. Such limiting conditions paradoxically stimulate the translation of ATF4 mRNA through a regulatory 5' leader sequence with multiple upstream Open Reading Frames (uORFs), thereby activating stress-responsive gene expression. Here, we report the identification of two critical regulators of such ATF4 induction, the noncanonical initiation factors eIF2D and DENR. Loss of eIF2D and DENR in Drosophila results in increased vulnerability to amino acid deprivation, susceptibility to retinal degeneration caused by endoplasmic reticulum (ER) stress, and developmental defects similar to ATF4 mutants. eIF2D requires its RNA-binding motif for regulation of 5' leader-mediated ATF4 translation. Consistently, eIF2D and DENR deficient human cells show impaired ATF4 protein induction in response to ER stress. Altogether, our findings indicate that eIF2D and DENR are critical mediators of ATF4 translational induction and stress responses in vivo.
PMID: 32938929
ISSN: 2041-1723
CID: 4593222

Proline Hydroxylation Primes Protein Kinases for Autophosphorylation and Activation

Lee, Sang Bae; Ko, Aram; Oh, Young Taek; Shi, Peiguo; D'Angelo, Fulvio; Frangaj, Brulinda; Koller, Antonius; Chen, Emily I; Cardozo, Timothy; Iavarone, Antonio; Lasorella, Anna
Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.
PMID: 32640193
ISSN: 1097-4164
CID: 4538932

Convergent Evolution of Neutralizing Antibodies to Staphylococcus aureus γ-Hemolysin C That Recognize an Immunodominant Primary Sequence-Dependent B-Cell Epitope

Hernandez, David N; Tam, Kayan; Shopsin, Bo; Radke, Emily E; Law, Karen; Cardozo, Timothy; Torres, Victor J; Silverman, Gregg J
Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. By biopanning these MAbs against a phage-display library of random Luk peptide fragments, we identified a small subregion within the rim domain of HlgC as the epitope for all the MAbs. Within the native holotoxin, this subregion folds into a conserved β-hairpin structure, with exposed key residues, His252 and Tyr253, required for antibody binding. On the basis of the phage-display results and molecular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or the homologous LukS246-260 subregion peptide elicited serum antibodies that specifically recognized the native holotoxin subunits. Furthermore, serum IgG from patients who were convalescent for invasive S. aureus infection showed neutralization of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255 peptide and was dependent on His252 and Tyr253 residues. We have thus validated an efficient, rapid, and scalable experimental workflow for identification of immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can be exploited for new S. aureus-protective vaccines and immunotherapies.
PMID: 32546616
ISSN: 2150-7511
CID: 4486272

Ubiquitylation of the ER-Shaping Protein Lunapark via the CRL3KLHL12 Ubiquitin Ligase Complex

Yuniati, Laurensia; Lauriola, Angela; Gerritsen, Manouk; Abreu, Susana; Ni, Eric; Tesoriero, Chiara; Onireti, Jacob O; Low, Teck Yew; Heck, Albert J R; Vettori, Andrea; Cardozo, Timothy; Guardavaccaro, Daniele
Cullin-RING ligases (CRLs) control key cellular processes by promoting ubiquitylation of a multitude of soluble cytosolic and nuclear proteins. Subsets of CRL complexes are recruited and activated locally at cellular membranes; however, few CRL functions and substrates at these distinct cellular compartments are known. Here, we use a proteomic screen to identify proteins that are ubiquitylated at cellular membranes and found that Lunapark, an endoplasmic reticulum (ER)-shaping protein localized to ER three-way junctions, is ubiquitylated by the CRL3KLHL12 ubiquitin ligase. We demonstrate that Lunapark interacts with mechanistic target of rapamycin complex-1 (mTORC1), a central cellular regulator that coordinates growth and metabolism with environmental conditions. We show that mTORC1 binds Lunapark specifically at three-way junctions, and lysosomes, where mTORC1 is activated, make contact with three-way junctions where Lunapark resides. Inhibition of Lunapark ubiquitylation results in neurodevelopmental defects indicating that KLHL12-dependent ubiquitylation of Lunapark is required for normal growth and development.
PMID: 32433973
ISSN: 2211-1247
CID: 4444402