Try a new search

Format these results:

Searched for:

person:chenz04

in-biosketch:yes

Total Results:

110


Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents

Sun, Guanghao; Zeng, Fei; McCartin, Michael; Zhang, Qiaosheng; Xu, Helen; Liu, Yaling; Chen, Zhe Sage; Wang, Jing
Effective treatments for chronic pain remain limited. Conceptually, a closed-loop neural interface combining sensory signal detection with therapeutic delivery could produce timely and effective pain relief. Such systems are challenging to develop because of difficulties in accurate pain detection and ultrafast analgesic delivery. Pain has sensory and affective components, encoded in large part by neural activities in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC), respectively. Meanwhile, studies show that stimulation of the prefrontal cortex (PFC) produces descending pain control. Here, we designed and tested a brain-machine interface (BMI) combining an automated pain detection arm, based on simultaneously recorded local field potential (LFP) signals from the S1 and ACC, with a treatment arm, based on optogenetic activation or electrical deep brain stimulation (DBS) of the PFC in freely behaving rats. Our multiregion neural interface accurately detected and treated acute evoked pain and chronic pain. This neural interface is activated rapidly, and its efficacy remained stable over time. Given the clinical feasibility of LFP recordings and DBS, our findings suggest that BMI is a promising approach for pain treatment.
PMID: 35767651
ISSN: 1946-6242
CID: 5263662

Uncovering spatial representations from spatiotemporal patterns of rodent hippocampal field potentials

Cao, Liang; Varga, Viktor; Chen, Zhe S
Spatiotemporal patterns of large-scale spiking and field potentials of the rodent hippocampus encode spatial representations during maze runs, immobility, and sleep. Here, we show that multisite hippocampal field potential amplitude at ultra-high-frequency band (FPAuhf), a generalized form of multiunit activity, provides not only a fast and reliable reconstruction of the rodent's position when awake, but also a readout of replay content during sharp-wave ripples. This FPAuhf feature may serve as a robust real-time decoding strategy from large-scale recordings in closed-loop experiments. Furthermore, we develop unsupervised learning approaches to extract low-dimensional spatiotemporal FPAuhf features during run and ripple periods and to infer latent dynamical structures from lower-rank FPAuhf features. We also develop an optical flow-based method to identify propagating spatiotemporal LFP patterns from multisite array recordings, which can be used as a decoding application. Finally, we develop a prospective decoding strategy to predict an animal's future decision in goal-directed navigation.
PMCID:8654278
PMID: 34888543
ISSN: 2667-2375
CID: 5110442

Spiking Recurrent Neural Networks Represent Task-Relevant Neural Sequences in Rule-Dependent Computation

Xue, Xiaohe; Wimmer, Ralf D.; Halassa, Michael M.; Chen, Zhe Sage
Prefrontal cortical neurons play essential roles in performing rule-dependent tasks and working memory-based decision making. Motivated by PFC recordings of task-performing mice, we developed an excitatory"“inhibitory spiking recurrent neural network (SRNN) to perform a rule-dependent two-alternative forced choice (2AFC) task. We imposed several important biological constraints onto the SRNN and adapted spike frequency adaptation (SFA) and SuperSpike gradient methods to train the SRNN efficiently. The trained SRNN produced emergent rule-specific tunings in single-unit representations, showing rule-dependent population dynamics that resembled experimentally observed data. Under various test conditions, we manipulated the SRNN parameters or configuration in computer simulations, and we investigated the impacts of rule-coding error, delay duration, recurrent weight connectivity and sparsity, and excitation/inhibition (E/I) balance on both task performance and neural representations. Overall, our modeling study provides a computational framework to understand neuronal representations at a fine timescale during working memory and cognitive control and provides new experimentally testable hypotheses in future experiments.
SCOPUS:85124275052
ISSN: 1866-9956
CID: 5165912

Decoding pain from brain activity

Chen, Zhe Sage
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
PMID: 34608868
ISSN: 1741-2552
CID: 5039502

Sharp Tuning of Head Direction and Angular Head Velocity Cells in the Somatosensory Cortex

Long, Xiaoyang; Deng, Bin; Young, Calvin K; Liu, Guo-Long; Zhong, Zeqi; Chen, Qian; Yang, Hui; Lv, Sheng-Qing; Chen, Zhe Sage; Zhang, Sheng-Jia
Head direction (HD) cells form a fundamental component in the brain's spatial navigation system and are intricately linked to spatial memory and cognition. Although HD cells have been shown to act as an internal neuronal compass in various cortical and subcortical regions, the neural substrate of HD cells is incompletely understood. It is reported that HD cells in the somatosensory cortex comprise regular-spiking (RS, putative excitatory) and fast-spiking (FS, putative inhibitory) neurons. Surprisingly, somatosensory FS HD cells fire in bursts and display much sharper head-directionality than RS HD cells. These FS HD cells are nonconjunctive, rarely theta rhythmic, sparsely connected and enriched in layer 5. Moreover, sharply tuned FS HD cells, in contrast with RS HD cells, maintain stable tuning in darkness; FS HD cells' coexistence with RS HD cells and angular head velocity (AHV) cells in a layer-specific fashion through the somatosensory cortex presents a previously unreported configuration of spatial representation in the neocortex. Together, these findings challenge the notion that FS interneurons are weakly tuned to sensory stimuli, and offer a local circuit organization relevant to the generation and transmission of HD signaling in the brain.
PMID: 35297541
ISSN: 2198-3844
CID: 5182432

Interictal EEG and ECG for SUDEP Risk Assessment: A Retrospective Multicenter Cohort Study

Chen, Zhe Sage; Hsieh, Aaron; Sun, Guanghao; Bergey, Gregory K; Berkovic, Samuel F; Perucca, Piero; D'Souza, Wendyl; Elder, Christopher J; Farooque, Pue; Johnson, Emily L; Barnard, Sarah; Nightscales, Russell; Kwan, Patrick; Moseley, Brian; O'Brien, Terence J; Sivathamboo, Shobi; Laze, Juliana; Friedman, Daniel; Devinsky, Orrin
Objective/UNASSIGNED:Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality. Although lots of effort has been made in identifying clinical risk factors for SUDEP in the literature, there are few validated methods to predict individual SUDEP risk. Prolonged postictal EEG suppression (PGES) is a potential SUDEP biomarker, but its occurrence is infrequent and requires epilepsy monitoring unit admission. We use machine learning methods to examine SUDEP risk using interictal EEG and ECG recordings from SUDEP cases and matched living epilepsy controls. Methods/UNASSIGNED:This multicenter, retrospective, cohort study examined interictal EEG and ECG recordings from 30 SUDEP cases and 58 age-matched living epilepsy patient controls. We trained machine learning models with interictal EEG and ECG features to predict the retrospective SUDEP risk for each patient. We assessed cross-validated classification accuracy and the area under the receiver operating characteristic (AUC) curve. Results/UNASSIGNED:The logistic regression (LR) classifier produced the overall best performance, outperforming the support vector machine (SVM), random forest (RF), and convolutional neural network (CNN). Among the 30 patients with SUDEP [14 females; mean age (SD), 31 (8.47) years] and 58 living epilepsy controls [26 females (43%); mean age (SD) 31 (8.5) years], the LR model achieved the median AUC of 0.77 [interquartile range (IQR), 0.73-0.80] in five-fold cross-validation using interictal alpha and low gamma power ratio of the EEG and heart rate variability (HRV) features extracted from the ECG. The LR model achieved the mean AUC of 0.79 in leave-one-center-out prediction. Conclusions/UNASSIGNED:Our results support that machine learning-driven models may quantify SUDEP risk for epilepsy patients, future refinements in our model may help predict individualized SUDEP risk and help clinicians correlate predictive scores with the clinical data. Low-cost and noninvasive interictal biomarkers of SUDEP risk may help clinicians to identify high-risk patients and initiate preventive strategies.
PMCID:8973318
PMID: 35370908
ISSN: 1664-2295
CID: 5191502

Are Grid-Like Representations a Component of All Perception and Cognition?

Chen, Zhe Sage; Zhang, Xiaohan; Long, Xiaoyang; Zhang, Sheng-Jia
Grid cells or grid-like responses have been reported in the rodent, bat and human brains during various spatial and non-spatial tasks. However, the functions of grid-like representations beyond the classical hippocampal formation remain elusive. Based on accumulating evidence from recent rodent recordings and human fMRI data, we make speculative accounts regarding the mechanisms and functional significance of the sensory cortical grid cells and further make theory-driven predictions. We argue and reason the rationale why grid responses may be universal in the brain for a wide range of perceptual and cognitive tasks that involve locomotion and mental navigation. Computational modeling may provide an alternative and complementary means to investigate the grid code or grid-like map. We hope that the new discussion will lead to experimentally testable hypotheses and drive future experimental data collection.
PMCID:9329517
PMID: 35911570
ISSN: 1662-5110
CID: 5287642

Disrupted population coding in the prefrontal cortex underlies pain aversion

Li, Anna; Liu, Yaling; Zhang, Qiaosheng; Friesner, Isabel; Jee, Hyun Jung; Chen, Zhe Sage; Wang, Jing
The prefrontal cortex (PFC) regulates a wide range of sensory experiences. Chronic pain is known to impair normal neural response, leading to enhanced aversion. However, it remains unknown how nociceptive responses in the cortex are processed at the population level and whether such processes are disrupted by chronic pain. Using in vivo endoscopic calcium imaging, we identify increased population activity in response to noxious stimuli and stable patterns of functional connectivity among neurons in the prelimbic (PL) PFC from freely behaving rats. Inflammatory pain disrupts functional connectivity of PFC neurons and reduces the overall nociceptive response. Interestingly, ketamine, a well-known neuromodulator, restores the functional connectivity among PL-PFC neurons in the inflammatory pain model to produce anti-aversive effects. These results suggest a dynamic resource allocation mechanism in the prefrontal representations of pain and indicate that population activity in the PFC critically regulates pain and serves as an important therapeutic target.
PMID: 34758316
ISSN: 2211-1247
CID: 5046122

Stimulus-Driven and Spontaneous Dynamics in Excitatory-Inhibitory Recurrent Neural Networks for Sequence Representation

Rajakumar, Alfred; Rinzel, John; Chen, Zhe S
Recurrent neural networks (RNNs) have been widely used to model sequential neural dynamics ("neural sequences") of cortical circuits in cognitive and motor tasks. Efforts to incorporate biological constraints and Dale's principle will help elucidate the neural representations and mechanisms of underlying circuits. We trained an excitatory-inhibitory RNN to learn neural sequences in a supervised manner and studied the representations and dynamic attractors of the trained network. The trained RNN was robust to trigger the sequence in response to various input signals and interpolated a time-warped input for sequence representation. Interestingly, a learned sequence can repeat periodically when the RNN evolved beyond the duration of a single sequence. The eigenspectrum of the learned recurrent connectivity matrix with growing or damping modes, together with the RNN's nonlinearity, were adequate to generate a limit cycle attractor. We further examined the stability of dynamic attractors while training the RNN to learn two sequences. Together, our results provide a general framework for understanding neural sequence representation in the excitatory-inhibitory RNN.
PMID: 34530451
ISSN: 1530-888x
CID: 4999822

A geometric framework for understanding dynamic information integration in context-dependent computation

Zhang, Xiaohan; Liu, Shenquan; Chen, Zhe Sage
The prefrontal cortex (PFC) plays a prominent role in performing flexible cognitive functions and working memory, yet the underlying computational principle remains poorly understood. Here, we trained a rate-based recurrent neural network (RNN) to explore how the context rules are encoded, maintained across seconds-long mnemonic delay, and subsequently used in a context-dependent decision-making task. The trained networks replicated key experimentally observed features in the PFC of rodent and monkey experiments, such as mixed selectivity, neuronal sequential activity, and rotation dynamics. To uncover the high-dimensional neural dynamical system, we further proposed a geometric framework to quantify and visualize population coding and sensory integration in a temporally defined manner. We employed dynamic epoch-wise principal component analysis (PCA) to define multiple task-specific subspaces and task-related axes, and computed the angles between task-related axes and these subspaces. In low-dimensional neural representations, the trained RNN first encoded the context cues in a cue-specific subspace, and then maintained the cue information with a stable low-activity state persisting during the delay epoch, and further formed line attractors for sensor integration through low-dimensional neural trajectories to guide decision-making. We demonstrated via intensive computer simulations that the geometric manifolds encoding the context information were robust to varying degrees of weight perturbation in both space and time. Overall, our analysis framework provides clear geometric interpretations and quantification of information coding, maintenance, and integration, yielding new insight into the computational mechanisms of context-dependent computation.
PMCID:8367843
PMID: 34430809
ISSN: 2589-0042
CID: 5006462