Try a new search

Format these results:

Searched for:

person:chenz04

in-biosketch:yes

Total Results:

123


[EXPRESS] Sleep spindles as a diagnostic and therapeutic target for chronic pain

Caravan, Bassir; Hu, Lizabeth; Veyg, Daniel; Kulkarni, Prathamesh; Zhang, Qiaosheng; Chen, Zhe; Wang, Jing
Pain is known to disrupt sleep patterns, and disturbances in sleep can further worsen pain symptoms. Sleep spindles occur during slow wave sleep and have established effects on sensory and affective processing in mammals. A number of chronic neuropsychiatric conditions, meanwhile, are known to alter sleep spindle density. The effect of persistent pain on sleep spindle waves, however, remains unknown, and studies of sleep spindles are challenging due to long period of monitoring and data analysis. Utilizing automated sleep spindle detection algorithms built on deep learning, we can monitor the effect of pain states on sleep spindle activity. In this study, we show that in a chronic pain model in rodents, there is a significant decrease in sleep spindle activity compared to controls. Meanwhile, methods to restore sleep spindles are associated with decreased pain symptoms. These results suggest that sleep spindle density correlates with chronic pain and may be both a potential biomarker for chronic pain and a target for neuromodulaton therapy.
PMID: 31912761
ISSN: 1744-8069
CID: 4257342

Tracking Changes in Brain Network Connectivity under Transcranial Current Stimulation

Jami, Apoorva Sagarwal; Guo, Xinling; Kulkarni, Prathamesh; Henin, Simon E; Liu, Anli; Chen, Zhe
Noninvasive transcranial brain stimulation has been widely used in experimental and clinical applications to perturb the brain activity, aiming at promoting synaptic plasticity or enhancing functional connectivity within targeted brain regions. However, there are different types of neurostimulations and various choices of stimulation parameters; how these choices influence the intermediate neurophysiological effects and brain connectivity remain incompletely understood. We propose several quantitative methods to investigate the brain connectivity of an epileptic patient before and after transcranial alternating/direct current stimulation (tACS/tDCS). The neuro-feedback derived from our analyses may provide useful cues for the effectiveness of neurostimulation.
PMID: 31947314
ISSN: 1557-170x
CID: 4271622

A Predictive Coding Model for Evoked and Spontaneous Pain Perception

Song, Yuru; Kemprecos, Helen; Wang, Jing; Chen, Zhe
Pain is a complex multidimensional experience, and pain perception is still incompletely understood. Here we combine animal behavior, electrophysiology, and computer modeling to dissect mechanisms of evoked and spontaneous pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) of freely behaving rats during pain episodes, and develop a predictive coding model to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Our preliminary results from computational simulations support the experimental findings and provide new predictions.
PMID: 31946512
ISSN: 1557-170x
CID: 4271612

Dynamics of motor cortical activity during naturalistic feeding behavior

Liu, Shizhao; Iriarte-Diaz, Jose; Hatsopoulos, Nicholas; Ross, Callum F; Takahashi, Kazutaka; Chen, Zhe Sage
OBJECTIVE:The orofacial primary motor cortex (MIo) plays a critical role in controlling tongue and jaw movements during oral motor functions, such as chewing, swallowing and speech. However, the neural mechanisms of MIo during naturalistic feeding are still poorly understood. There is a strong need for a systematic study of motor cortical dynamics during feeding behavior. APPROACH/METHODS:To investigate the neural dynamics and variability of MIo neuronal activity during naturalistic feeding, we used chronically implanted micro-electrode arrays to simultaneously recorded ensembles of neuronal activity in MIo of two monkeys (Macaca mulatta) while eating various types of food. We developed a Bayesian nonparametric latent variable model to reveal latent structures of neuronal population activity of MIo and identify the complex mapping between MIo ensemble spike activity and high-dimensional kinematics. MAIN RESULTS/RESULTS:Rhythmic neuronal firing patterns and oscillatory dynamics are evident in single-unit activity. At the population level, we uncovered the neural dynamics of rhythmic chewing, and quantified the neural variability at multiple timescales (complete feeding sequences, chewing sequence stages, chewing gape cycle phases) across food types. Our approach accommodates time-warping of chewing sequences and automatic model selection, and maps the latent states to chewing behaviors at fine timescales. SIGNIFICANCE/CONCLUSIONS:Our work shows that neural representations of MIo ensembles display spatiotemporal patterns in chewing gape cycles at different chew sequence stages, and these patterns vary in a stage-dependent manner. Unsupervised learning and decoding analysis may reveal the link between complex MIo spatiotemporal patterns and chewing kinematics.
PMID: 30721881
ISSN: 1741-2552
CID: 3631362

A deep learning approach for real-time detection of sleep spindles

Kulkarni, Prathamesh M; Xiao, Zhengdong; Robinson, Eric J; Sagarwa Jami, Apoorva; Zhang, Jianping; Zhou, Haocheng; Henin, Simon E; Liu, Anli A; Osorio, Ricardo S; Wang, Jing; Chen, Zhe Sage
OBJECTIVE:Sleep spindles have been implicated in memory consolidation and synaptic plasticity during NREM sleep. Detection accuracy and latency in automatic spindle detection are critical for real-time applications. APPROACH/METHODS:Here we propose a novel deep learning strategy (SpindleNet) to detect sleep spindles based on a single EEG channel. While the majority of spindle detection methods are used for off-line applications, our method is well suited for online applications. MAIN RESULTS/RESULTS:Compared with other spindle detection methods, SpindleNet achieves superior detection accuracy and speed, as demonstrated in two publicly available expert-validated EEG sleep spindle datasets. Our real-time detection of spindle onset achieves detection latencies of 150-350 ms (~2-3 spindle cycles) and retains excellent performance under low EEG sampling frequencies and low signal-to-noise ratios. SpindleNet has good generalization across different sleep datasets from various subject groups of different ages and species. SIGNIFICANCE/CONCLUSIONS:SpindleNet is ultra-fast and scalable to multichannel EEG recordings, with an accuracy level comparable to human experts, making it appealing for long-term sleep monitoring and closed-loop neuroscience experiments. &#13.
PMID: 30790769
ISSN: 1741-2552
CID: 3687552

Sleep oscillation-specific associations with Alzheimer's disease CSF biomarkers: novel roles for sleep spindles and tau

Kam, Korey; Parekh, Ankit; Sharma, Ram A; Andrade, Andreia; Lewin, Monica; Castillo, Bresne; Bubu, Omonigho M; Chua, Nicholas J; Miller, Margo D; Mullins, Anna E; Glodzik, Lidia; Mosconi, Lisa; Gosselin, Nadia; Prathamesh, Kulkarni; Chen, Zhe; Blennow, Kaj; Zetterberg, Henrik; Bagchi, Nisha; Cavedoni, Bianca; Rapoport, David M; Ayappa, Indu; de Leon, Mony J; Petkova, Eva; Varga, Andrew W; Osorio, Ricardo S
BACKGROUND:, P-tau, and T-tau with sleep spindle density and other biophysical properties of sleep spindles in a sample of cognitively normal elderly individuals. METHODS:, P-tau and T-tau. Seven days of actigraphy were collected to assess habitual total sleep time. RESULTS:, P-tau and T-tau. From the three, CSF T-tau was the most significantly associated with spindle density, after adjusting for age, sex and ApoE4. Spindle duration, count and fast spindle density were also negatively correlated with T-tau levels. Sleep duration and other measures of sleep quality were not correlated with spindle characteristics and did not modify the associations between sleep spindle characteristics and the CSF biomarkers of AD. CONCLUSIONS:Reduced spindles during N2 sleep may represent an early dysfunction related to tau, possibly reflecting axonal damage or altered neuronal tau secretion, rendering it a potentially novel biomarker for early neuronal dysfunction. Given their putative role in memory consolidation and neuroplasticity, sleep spindles may represent a mechanism by which tau impairs memory consolidation, as well as a possible target for therapeutic interventions in cognitive decline.
PMID: 30791922
ISSN: 1750-1326
CID: 3686652

Ensembles of change-point detectors: implications for real-time BMI applications

Xiao, Zhengdong; Hu, Sile; Zhang, Qiaosheng; Tian, Xiang; Chen, Yaowu; Wang, Jing; Chen, Zhe
Brain-machine interfaces (BMIs) have been widely used to study basic and translational neuroscience questions. In real-time closed-loop neuroscience experiments, many practical issues arise, such as trial-by-trial variability, and spike sorting noise or multi-unit activity. In this paper, we propose a new framework for change-point detection based on ensembles of independent detectors in the context of BMI application for detecting acute pain signals. Motivated from ensemble learning, our proposed "ensembles of change-point detectors" (ECPDs) integrate multiple decisions from independent detectors, which may be derived based on data recorded from different trials, data recorded from different brain regions, data of different modalities, or models derived from different learning methods. By integrating multiple sources of information, the ECPDs aim to improve detection accuracy (in terms of true positive and true negative rates) and achieve an optimal trade-off of sensitivity and specificity. We validate our method using computer simulations and experimental recordings from freely behaving rats. Our results have shown superior and robust performance of ECPDS in detecting the onset of acute pain signals based on neuronal population spike activity (or combined with local field potentials) recorded from single or multiple brain regions.
PMID: 30206733
ISSN: 1573-6873
CID: 3278272

Neuromodulation for Pain Management

Wang, Jing; Chen, Zhe
Pain is a salient and complex sensory experience with important affective and cognitive dimensions. The current definition of pain relies on subjective reports in both humans and experimental animals. Such definition lacks basic mechanistic insights and can lead to a high degree of variability. Research on biomarkers for pain has previously focused on genetic analysis. However, recent advances in human neuroimaging and research in animal models have begun to show the promise of a circuit-based neural signature for pain. At the treatment level, pharmacological therapy for pain remains limited. Neuromodulation has emerged as a specific form of treatment without the systemic side effects of pharmacotherapies. In this review, we will discuss some of the current neuromodulatory modalities for pain, research on newer targets, as well as emerging possibility for an integrated brain-computer interface approach for pain management.
PMID: 31729677
ISSN: 0065-2598
CID: 4187052

Cortical Pain Processing in the Rat Anterior Cingulate Cortex and Primary Somatosensory Cortex

Xiao, Zhengdong; Martinez, Erik; Kulkarni, Prathamesh M; Zhang, Qiaosheng; Hou, Qianning; Rosenberg, David; Talay, Robert; Shalot, Leor; Zhou, Haocheng; Wang, Jing; Chen, Zhe Sage
Pain is a complex multidimensional experience encompassing sensory-discriminative, affective-motivational and cognitive-emotional components mediated by different neural mechanisms. Investigations of neurophysiological signals from simultaneous recordings of two or more cortical circuits may reveal important circuit mechanisms on cortical pain processing. The anterior cingulate cortex (ACC) and primary somatosensory cortex (S1) represent two most important cortical circuits related to sensory and affective processing of pain. Here, we recorded in vivo extracellular activity of the ACC and S1 simultaneously from male adult Sprague-Dale rats (n = 5), while repetitive noxious laser stimulations were delivered to animalÕs hindpaw during pain experiments. We identified spontaneous pain-like events based on stereotyped pain behaviors in rats. We further conducted systematic analyses of spike and local field potential (LFP) recordings from both ACC and S1 during evoked and spontaneous pain episodes. From LFP recordings, we found stronger phase-amplitude coupling (theta phase vs. gamma amplitude) in the S1 than the ACC (n = 10 sessions), in both evoked (p = 0.058) and spontaneous pain-like behaviors (p = 0.017, paired signed rank test). In addition, pain-modulated ACC and S1 neuronal firing correlated with the amplitude of stimulus-induced event-related potentials (ERPs) during evoked pain episodes. We further designed statistical and machine learning methods to detect pain signals by integrating ACC and S1 ensemble spikes and LFPs. Together, these results reveal differential coding roles between the ACC and S1 in cortical pain processing, as well as point to distinct neural mechanisms between evoked and putative spontaneous pain at both LFP and cellular levels.
PMCID:6492531
PMID: 31105532
ISSN: 1662-5102
CID: 4038782

Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes

Hu, Sile; Ciliberti, Davide; Grosmark, Andres D; Michon, Frédéric; Ji, Daoyun; Penagos, Hector; Buzsáki, György; Wilson, Matthew A; Kloosterman, Fabian; Chen, Zhe
Uncovering spatial representations from large-scale ensemble spike activity in specific brain circuits provides valuable feedback in closed-loop experiments. We develop a graphics processing unit (GPU)-powered population-decoding system for ultrafast reconstruction of spatial positions from rodents' unsorted spatiotemporal spiking patterns, during run behavior or sleep. In comparison with an optimized quad-core central processing unit (CPU) implementation, our approach achieves an ∼20- to 50-fold increase in speed in eight tested rat hippocampal, cortical, and thalamic ensemble recordings, with real-time decoding speed (approximately fraction of a millisecond per spike) and scalability up to thousands of channels. By accommodating parallel shuffling in real time (computation time <15 ms), our approach enables assessment of the statistical significance of online-decoded "memory replay" candidates during quiet wakefulness or sleep. This open-source software toolkit supports the decoding of spatial correlates or content-triggered experimental manipulation in closed-loop neuroscience experiments.
PMID: 30517852
ISSN: 2211-1247
CID: 3520322