Try a new search

Format these results:

Searched for:

person:dasenj01

in-biosketch:yes

Total Results:

55


The Ancient Origins of Neural Substrates for Land Walking

Jung, Heekyung; Baek, Myungin; D'Elia, Kristen P; Boisvert, Catherine; Currie, Peter D; Tay, Boon-Hui; Venkatesh, Byrappa; Brown, Stuart M; Heguy, Adriana; Schoppik, David; Dasen, Jeremy S
Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.
PMCID:5808577
PMID: 29425489
ISSN: 1097-4172
CID: 2948352

Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits

Baek, Myungin; Pivetta, Chiara; Liu, Jeh-Ping; Arber, Silvia; Dasen, Jeremy S
Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord. Transformation of axially projecting MNs to a limb-level lateral motor column (LMC) fate, through mutation of the Hoxc9 gene, causes the central afferents of limb proprioceptive sensory neurons to target MNs connected to functionally inappropriate muscles. MN columnar identity also determines the pattern and distribution of inputs from multiple classes of premotor interneurons, indicating that MNs broadly influence circuit connectivity. These findings indicate that MN-intrinsic programs contribute to the initial architecture of locomotor circuits.
PMCID:5665584
PMID: 29069594
ISSN: 2211-1247
CID: 2756562

Molecular Logic of Spinocerebellar Tract Neuron Diversity and Connectivity

Baek, Myungin; Menon, Vilas; Jessell, Thomas M; Hantman, Adam W; Dasen, Jeremy S
Coordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle- and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single-cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes. We found that SCTNs relaying proprioceptive sensory information from limb and axial muscles are generated through segmentally restricted actions of specific Hox genes. Loss of Hox function disrupts SCTN-subtype-specific transcriptional programs, leading to defects in the connections between proprioceptive sensory neurons, SCTNs, and the cerebellum. These results indicate that Hox-dependent genetic programs play essential roles in the assembly of neural circuits necessary for communication between the brain and spinal cord.
PMID: 31141687
ISSN: 2211-1247
CID: 3909092

PRC1 sustains the integrity of neural fate in the absence of PRC2 function

Sawai, Ayana; Pfennig, Sarah; Bulajić, Milica; Miller, Alexander; Khodadadi-Jamayran, Alireza; Mazzoni, Esteban Orlando; Dasen, Jeremy S
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally-restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
PMID: 34994686
ISSN: 2050-084x
CID: 5107472

Establishing and maintaining Hox profiles during spinal cord development

Miller, Alexander; Dasen, Jeremy S
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
PMCID:10524138
PMID: 37029058
ISSN: 1096-3634
CID: 5625672

SorCS2 binds progranulin to regulate motor neuron development

Thomasen, Pernille Bogetofte; Salasova, Alena; Kjaer-Sorensen, Kasper; Woloszczuková, Lucie; Lavický, Josef; Login, Hande; Tranberg-Jensen, Jeppe; Almeida, Sergio; Beel, Sander; Kavková, Michaela; Qvist, Per; Kjolby, Mads; Ovesen, Peter Lund; Nolte, Stella; Vestergaard, Benedicte; Udrea, Andreea-Cornelia; Nejsum, Lene Niemann; Chao, Moses V; Van Damme, Philip; Krivanek, Jan; Dasen, Jeremy; Oxvig, Claus; Nykjaer, Anders
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
PMID: 37897724
ISSN: 2211-1247
CID: 5590282

Determinants of motor neuron functional subtypes important for locomotor speed

D'Elia, Kristen P; Hameedy, Hanna; Goldblatt, Dena; Frazel, Paul; Kriese, Mercer; Zhu, Yunlu; Hamling, Kyla R; Kawakami, Koichi; Liddelow, Shane A; Schoppik, David; Dasen, Jeremy S
Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.
PMCID:10600875
PMID: 37676768
ISSN: 2211-1247
CID: 5607632

Establishing and maintaining Hox profiles during spinal cord development

Miller, Alexander; Dasen, Jeremy S.
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
SCOPUS:85151712643
ISSN: 1084-9521
CID: 5460542

Little skate genome provides insights into genetic programs essential for limb-based locomotion

Yoo, DongAhn; Park, Junhee; Lee, Chul; Song, Injun; Lee, Young Ho; Yun, Tery; Lee, Hyemin; Heguy, Adriana; Han, Jae Yong; Dasen, Jeremy S; Kim, Heebal; Baek, Myungin
The little skate Leucoraja erinacea, a cartilaginous fish, displays pelvic fin driven walking-like behavior using genetic programs and neuronal subtypes similar to those of land vertebrates. However, mechanistic studies on little skate motor circuit development have been limited, due to a lack of high-quality reference genome. Here, we generated an assembly of the little skate genome, with precise gene annotation and structures, which allowed post-genome analysis of spinal motor neurons (MNs) essential for locomotion. Through interspecies comparison of mouse, skate and chicken MN transcriptomes, shared and divergent gene expression profiles were identified. Comparison of accessible chromatin regions between mouse and skate MNs predicted shared transcription factor (TF) motifs with divergent ones, which could be used for achieving differential regulation of MN-expressed genes. A greater number of TF motif predictions were observed in MN-expressed genes in mouse than in little skate. These findings suggest conserved and divergent molecular mechanisms controlling MN development of vertebrates during evolution, which might contribute to intricate gene regulatory networks in the emergence of a more sophisticated motor system in tetrapods.
PMCID:9605692
PMID: 36288084
ISSN: 2050-084x
CID: 5358042

Big insight from the little skate: Leucoraja erinacea as a developmental model system

Gillis, J Andrew; Bennett, Scott; Criswell, Katharine E; Rees, Jenaid; Sleight, Victoria A; Hirschberger, Christine; Calzarette, Dan; Kerr, Sarah; Dasen, Jeremy
The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.
PMID: 35337464
ISSN: 1557-8933
CID: 5190652