Try a new search

Format these results:

Searched for:



Total Results:


Inhaled agonists of soluble guanylate cyclase induce selective pulmonary vasodilation

Evgenov, Oleg V; Kohane, Daniel S; Bloch, Kenneth D; Stasch, Johannes-Peter; Volpato, Gian P; Bellas, Evangelia; Evgenov, Natalia V; Buys, Emmanuel S; Gnoth, Mark J; Graveline, Amanda R; Liu, Rong; Hess, Dean R; Langer, Robert; Zapol, Warren M
RATIONALE/BACKGROUND:Nitric oxide-independent agonists of soluble guanylate cyclase (sGC) have been developed. OBJECTIVES/OBJECTIVE:We tested whether inhalation of novel dry-powder microparticle formulations containing sGC stimulators (BAY 41-2272, BAY 41-8543) or an sGC activator (BAY 58-2667) would produce selective pulmonary vasodilation in lambs with acute pulmonary hypertension. We also evaluated the combined administration of BAY 41-8543 microparticles and inhaled nitric oxide (iNO). Finally, we examined whether inhaling BAY 58-2667 microparticles would produce pulmonary vasodilation when the response to iNO is impaired. METHODS:In awake, spontaneously breathing lambs instrumented with vascular catheters and a tracheostomy tube, U-46619 was infused intravenously to increase mean pulmonary arterial pressure to 35 mm Hg. MEASUREMENTS AND MAIN RESULTS/RESULTS:Inhalation of microparticles composed of either BAY 41-2272, BAY 41-8543, or BAY 58-2667 and excipients (dipalmitoylphosphatidylcholine, albumin, lactose) produced dose-dependent pulmonary vasodilation and increased transpulmonary cGMP release without significant effect on mean arterial pressure. Inhalation of microparticles containing BAY 41-8543 or BAY 58-2667 increased systemic arterial oxygenation. The magnitude and duration of pulmonary vasodilation induced by iNO were augmented after inhaling BAY 41-8543 microparticles. Intravenous administration of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), which oxidizes the prosthetic heme group of sGC, markedly reduced the pulmonary vasodilator effect of iNO. In contrast, pulmonary vasodilation and transpulmonary cGMP release induced by inhaling BAY 58-2667 microparticles were greatly enhanced after treatment with ODQ. CONCLUSIONS:Inhalation of microparticles containing agonists of sGC may provide an effective novel treatment for patients with pulmonary hypertension, particularly when responsiveness to iNO is impaired by oxidation of sGC.
PMID: 17872487
ISSN: 1535-4970
CID: 3567462

Congenital NOS2 deficiency prevents impairment of hypoxic pulmonary vasoconstriction in murine ventilator-induced lung injury

Liu, Rong; Hotta, Yukako; Graveline, Amanda R; Evgenov, Oleg V; Buys, Emmanuel S; Bloch, Kenneth D; Ichinose, Fumito; Zapol, Warren M
Hypoxic pulmonary vasoconstriction (HPV) preserves systemic arterial oxygenation during lung injury by diverting blood flow away from poorly ventilated lung regions. Ventilator-induced lung injury (VILI) is characterized by pulmonary inflammation, lung edema, and impaired HPV leading to systemic hypoxemia. Studying mice congenitally deficient in inducible nitric oxide synthase (NOS2) and wild-type mice treated with a selective NOS2 inhibitor, L-N(6)-(1-iminoethyl)lysine (L-NIL), we investigated the contribution of NOS2 to the impairment of HPV in anesthetized mice subjected to 6 h of either high tidal volume (HV(T)) or low tidal volume (LV(T)) ventilation. HPV was estimated by measuring the changes of left lung pulmonary vascular resistance (LPVR) in response to left mainstem bronchus occlusion (LMBO). LMBO increased the LPVR similarly in wild-type, NOS2(-/-), and wild-type mice treated with L-NIL 30 min before commencing 6 h of LV(T) ventilation (96% +/- 30%, 103% +/- 33%, and 80% +/- 16%, respectively, means +/- SD). HPV was impaired in wild-type mice subjected to 6 h of HV(T) ventilation (23% +/- 16%). In contrast, HPV was preserved after 6 h of HV(T) ventilation in NOS2(-/-) and wild-type mice treated with L-NIL either 30 min before or 6 h after commencing HV(T) ventilation (66% +/- 22%, 82% +/- 29%, and 85% +/- 16%, respectively). After 6 h of HV(T) ventilation and LMBO, systemic arterial oxygen tension was higher in NOS2(-/-) than in wild-type mice (192 +/- 11 vs. 171 +/- 17 mmHg; P < 0.05). We conclude that either congenital NOS2 deficiency or selective inhibition of NOS2 protects mice from the impairment of HPV occurring after 6 h of HV(T) ventilation.
PMID: 17720871
ISSN: 1040-0605
CID: 3567452

NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential

Evgenov, Oleg V; Pacher, Pál; Schmidt, Peter M; Haskó, György; Schmidt, Harald H H W; Stasch, Johannes-Peter
Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impaired bioavailability and/or responsiveness to endogenous NO has been implicated in the pathogenesis of cardiovascular and other diseases. Current therapies that involve the use of organic nitrates and other NO donors have limitations, including non-specific interactions of NO with various biomolecules, lack of response and the development of tolerance following prolonged administration. Compounds that activate sGC in an NO-independent manner might therefore provide considerable therapeutic advantages. Here we review the discovery, biochemistry, pharmacology and clinical potential of haem-dependent sGC stimulators (including YC-1, BAY 41-2272, BAY 41-8543, CFM-1571 and A-350619) and haem-independent sGC activators (including BAY 58-2667 and HMR-1766).
PMID: 16955067
ISSN: 1474-1776
CID: 3567442

Inhibition of phosphodiesterase 1 augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs with acute pulmonary hypertension

Evgenov, Oleg V; Busch, Cornelius J; Evgenov, Natalia V; Liu, Rong; Petersen, Bodil; Falkowski, George E; Petho, Beata; Vas, Adám; Bloch, Kenneth D; Zapol, Warren M; Ichinose, Fumito
Phosphodiesterase 1 (PDE1) modulates vascular tone and the development of tolerance to nitric oxide (NO)-releasing drugs in the systemic circulation. Any role of PDE1 in the pulmonary circulation remains largely uncertain. We measured the expression of genes encoding PDE1 isozymes in the pulmonary vasculature and examined whether or not selective inhibition of PDE1 by vinpocetine attenuates pulmonary hypertension and augments the pulmonary vasodilator response to inhaled NO in lambs. Using RT-PCR, we detected PDE1A, PDE1B, and PDE1C mRNAs in pulmonary arteries and veins isolated from healthy lambs. In 13 lambs, the thromboxane A(2) analog U-46619 was infused intravenously to increase mean pulmonary arterial pressure to 35 mmHg. Four animals received an intravenous infusion of vinpocetine at incremental doses of 0.3, 1, and 3 In nine lambs, inhaled NO was administered in a random order at 2, 5, 10, and 20 ppm before and after an intravenous infusion of 1 vinpocetine. Administration of vinpocetine did not alter pulmonary and systemic hemodynamics or transpulmonary cGMP or cAMP release. Inhaled NO selectively reduced mean pulmonary arterial pressure, pulmonary capillary pressure, and pulmonary vascular resistance index, while increasing transpulmonary cGMP release. The addition of vinpocetine enhanced pulmonary vasodilation and transpulmonary cGMP release induced by NO breathing without causing systemic vasodilation but did not prolong the duration of pulmonary vasodilation after NO inhalation was discontinued. Our findings demonstrate that selective inhibition of PDE1 augments the therapeutic efficacy of inhaled NO in an ovine model of acute chemically induced pulmonary hypertension.
PMID: 16284211
ISSN: 1040-0605
CID: 3567432

Role of nitrosative stress and activation of poly(ADP-ribose) polymerase-1 in cardiovascular failure associated with septic and hemorrhagic shock

Evgenov, Oleg V; Liaudet, Lucas
Reactive oxygen and nitrogen species, particularly peroxynitrite, are potent inducers of tissue damage during systemic inflammatory response and circulatory shock. Recent evidence indicates that the toxicity of these species largely depends on their ability to trigger activation of the nuclear enzyme poly(adenosine 5'-diphosphate ribose) polymerase-1 (PARP-1). Following excessive activation, PARP-1 depletes the intracellular stores of its substrate, nicotinamide adenine dinucleotide, thus slowing glycolysis, generation of high energy phosphates, and mitochondrial electron transport. Consequently, the severe metabolic crisis induced by PARP-1 activation results in acute cell dysfunction and necrotic cell death. In addition, activation of PARP-1 plays an important role in the upregulation of inflammatory cascades via a functional association with mitogen-activated protein kinases and several transcription factors, such as nuclear factor kappa B, resulting in augmented expression of pro-inflammatory cytokines, chemokines, adhesion molecules, and enzymes. In severe sepsis and hemorrhage, PARP-1 activation has emerged as one of the central mechanisms of systemic inflammation, endothelial dysfunction, peripheral vascular failure, and reduction of cardiac contractility. Innovative therapeutic strategies based on the pharmacological inhibition of PARP-1 catalytic activity might provide benefits by preventing tissue injury, organ dysfunction, and lethality associated with these conditions.
PMID: 16026325
ISSN: 1570-1611
CID: 3567422

NOS3 deficiency augments hypoxic pulmonary vasoconstriction and enhances systemic oxygenation during one-lung ventilation in mice

Liu, Rong; Evgenov, Oleg V; Ichinose, Fumito
Nitric oxide (NO), synthesized by NO synthases (NOS), plays a pivotal role in regulation of pulmonary vascular tone. To examine the role of endothelial NOS (NOS3) in hypoxic pulmonary vasoconstriction (HPV), we measured left lung pulmonary vascular resistance (LPVR), intrapulmonary shunting, and arterial PO2 (PaO2) before and during left mainstem bronchus occlusion (LMBO) in mice with and without a deletion of the gene encoding NOS3. The increase of LPVR induced by LMBO was greater in NOS3-deficient mice than in wild-type mice (151 +/- 39% vs. 109 +/- 36%, mean +/- SD; P < 0.05). NOS3-deficient mice had a lower intrapulmonary shunt fraction than wild-type mice (17.1 +/- 3.6% vs. 21.7 +/- 2.4%, P < 0.05) during LMBO. Both real-time PaO2 monitoring with an intra-arterial probe and arterial blood-gas analysis during LMBO showed higher PaO2 in NOS3-deficient mice than in wild-type mice (P < 0.05). Inhibition of all three NOS isoforms with Nomega-nitro-L-arginine methyl ester (L-NAME) augmented the increase of LPVR induced by LMBO in wild-type mice (183 +/- 67% in L-NAME treated vs. 109 +/- 36% in saline treated, P < 0.01) but not in NOS3-deficient mice. Similarly, systemic oxygenation during one-lung ventilation was augmented by L-NAME in wild-type mice but not in NOS3-deficient mice. These findings indicate that NO derived from NOS3 modulates HPV in vivo and that inhibition of NOS3 improves systemic oxygenation during acute unilateral lung hypoxia.
PMID: 15465885
ISSN: 8750-7587
CID: 3567392

Dynamic assessment of pulmonary edema [Letter]

Evgenov, Oleg V
PMID: 15599176
ISSN: 0090-3493
CID: 3567412

Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure

Pacher, Pál; Mabley, Jon G; Liaudet, Lucas; Evgenov, Oleg V; Marton, Anita; Haskó, György; Kollai, Márk; Szabó, Csaba
Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats.
PMID: 15231502
ISSN: 0363-6135
CID: 3567382

Soluble guanylate cyclase activator reverses acute pulmonary hypertension and augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs

Evgenov, Oleg V; Ichinose, Fumito; Evgenov, Natalia V; Gnoth, Mark J; Falkowski, George E; Chang, Yuchiao; Bloch, Kenneth D; Zapol, Warren M
BACKGROUND:Inhaled nitric oxide (NO) is a potent and selective pulmonary vasodilator, which induces cGMP synthesis by activating soluble guanylate cyclase (sGC) in ventilated lung regions. Carbon monoxide (CO) has also been proposed to influence smooth muscle tone via activation of sGC. We examined whether direct stimulation of sGC by BAY 41-2272 would produce pulmonary vasodilation and augment the pulmonary responses to inhaled NO or CO. METHODS AND RESULTS/RESULTS:In awake, instrumented lambs, the thromboxane analogue U-46619 was intravenously administered to increase mean pulmonary arterial pressure to 35 mm Hg. Intravenous infusion of BAY 41-2272 (0.03, 0.1, and 0.3 mg x kg(-1) x h(-1)) reduced mean pulmonary arterial pressure and pulmonary vascular resistance and increased transpulmonary cGMP release in a dose-dependent manner. Larger doses of BAY 41-2272 also produced systemic vasodilation and elevated the cardiac index. N(omega)-nitro-l-arginine methyl ester abolished the systemic but not the pulmonary vasodilator effects of BAY 41-2272. Furthermore, infusing BAY 41-2272 at 0.1 mg x kg(-1) x h(-1) potentiated and prolonged the pulmonary vasodilation induced by inhaled NO (2, 10, and 20 ppm). In contrast, inhaled CO (50, 250, and 500 ppm) had no effect on U-46619-induced pulmonary vasoconstriction before or during administration of BAY 41-2272. CONCLUSIONS:In lambs with acute pulmonary hypertension, BAY 41-2272 is a potent pulmonary vasodilator that augments and prolongs the pulmonary vasodilator response to inhaled NO. Direct pharmacological stimulation of sGC, either alone or in combination with inhaled NO, may provide a novel approach for the treatment of pulmonary hypertension.
PMID: 15466650
ISSN: 1524-4539
CID: 3567402

Novel endothelin receptor antagonist attenuates endotoxin-induced lung injury in sheep

Kuklin, Vladimir N; Kirov, Mikhail Y; Evgenov, Oleg V; Sovershaev, Mikhail A; Sjöberg, Jonas; Kirova, Svetlana S; Bjertnaes, Lars J
OBJECTIVE:To evaluate the cardiopulmonary effects of the novel endothelin receptor antagonist tezosentan in endotoxin-induced lung injury in sheep and to assess the dose response to tezosentan and endothelin-1 in healthy sheep. DESIGN/METHODS:Prospective, randomized, controlled experimental study. SETTING/METHODS:University animal laboratory. SUBJECTS/METHODS:Twenty-one yearling sheep. INTERVENTIONS/METHODS:Seventeen awake, chronically instrumented sheep were subjected to intravenous infusion of Ringer's lactate for 24 hrs. The animals were randomly assigned to a sham-operated group (n = 3), a lipopolysaccharide group (n = 7) receiving an intravenous infusion of Escherichia coli lipopolysaccharide 15 ng x kg x min, and a tezosentan group (n = 7) subjected to lipopolysaccharide and, from 4 hrs, an intravenous injection of tezosentan 3 mg/kg followed by infusion of 1 mg x kg x hr. In addition, four healthy sheep, exposed to an intravenous infusion of endothelin-1 at 20 ng x kg x min, after 1 hr received tezosentan in stepwise increasing doses of 0.5, 1, and 2 mg x kg x hr that were maintained for 1 hr each. After a 4-hr recovery, the sheep received infusions of tezosentan at the same dose rates as a pretreatment to endothelin-1. MEASUREMENTS AND MAIN RESULTS/RESULTS:In the sham-operated sheep, all cardiopulmonary variables remained unchanged. Lipopolysaccharide caused pulmonary hypertension, increased extravascular lung water index, and induced arterial hypoxemia. Tezosentan decreased the increments in pulmonary vascular resistance and extravascular lung water index by as much as 60% and 70%, respectively. In parallel, tezosentan ameliorated arterial hypoxemia, increased cardiac index, attenuated the decrease in stroke volume index, and reduced systemic vascular resistance. Compared with the lipopolysaccharide group, tezosentan further increased plasma concentrations of endothelin-1. In healthy animals, the administration of endothelin-1 induced systemic and pulmonary hypertension, increased extravascular lung water index, and evoked bradycardia and a decrease in cardiac index. These changes were attenuated by tezosentan infused at 1 and 2 mg x kg x hr. CONCLUSIONS:In an ovine model of endotoxin-induced lung injury, tezosentan ameliorates pulmonary hypertension, lung edema, cardiac dysfunction, and arterial hypoxemia. Tezosentan counteracts the hemodynamic effects of endothelin-1 in a dose-dependent manner.
PMID: 15090960
ISSN: 0090-3493
CID: 3567372