Searched for: person:evrong01
in-biosketch:yes
Direct measurement of the male germline mutation rate in individuals using sequential sperm samples
Shoag, Jonathan E; Srinivasa, Amoolya; Loh, Caitlin A; Liu, Mei Hong; Lassen, Emilie; Melanaphy, Shana; Costa, Benjamin M; Grońska-Pęski, Marta; Jabara, Nisrine T; Picciotto, Shany; Choi, Una; Bohorquez, Anyull D; Barbieri, Christopher E; Callum, Pamela; Skytte, Anne-Bine; Evrony, Gilad D
Mutations that accumulate in the human male germline with age are a major driver of genetic diversity and contribute to genetic diseases. However, aging-related male germline mutation rates have not been measured directly in germline cells (sperm) at the level of individuals. We developed a study design in which we recalled 23 sperm donors with prior banked samples to provide new sperm samples. The old and new sequential sperm samples were separated by long timespans, ranging from 10 to 33 years. We profiled these samples by high-fidelity duplex sequencing and demonstrate that direct high-fidelity sequencing of sperm yields cohort-wide mutation rates and patterns consistent with prior family-based (trio) studies. In every individual, we detected an increase in sperm mutation burden between the two sequential samples, yielding individual-specific measurements of germline mutation rate. Deep whole-genome sequencing of sequential sperm samples from two individuals followed by targeted validation measured remarkably stable mosaicism of clonal mutations that likely arose during embryonic and germline development, suggesting that age did not substantially impact the diversity of spermatogonial stem cell pools in these individuals. Our application of high-fidelity and deep whole-genome sequencing to sequential sperm samples provides insight into aging-related mutation processes in the male germline.
PMCID:11910575
PMID: 40089484
ISSN: 2041-1723
CID: 5812882
Ultra-rapid droplet digital PCR enables intraoperative tumor quantification
Murphy, Zachary R; Bianchini, Emilia C; Smith, Andrew; Körner, Lisa I; Russell, Teresa; Reinecke, David; Maarouf, Nader; Wang, Yuxiu; Golfinos, John G; Miller, Alexandra M; Snuderl, Matija; Orringer, Daniel A; Evrony, Gilad D
BACKGROUND:The diagnosis and treatment of tumors often depend on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. METHODS:Here, we introduce Ultra-Rapid droplet digital PCR (UR-ddPCR), a technology that achieves the fastest measurement, to date, of mutation burdens in tissue samples, from tissue to result in 15 min. Our workflow substantially reduces the time from tissue biopsy to molecular diagnosis and provides a highly accurate means of quantifying residual tumor infiltration at surgical margins. FINDINGS/RESULTS: = 0.995). CONCLUSIONS:The technology and workflow developed here enable intraoperative molecular-genetic assays with unprecedented speed and sensitivity. We anticipate that our method will facilitate novel point-of-care diagnostics and molecularly guided surgeries that improve clinical outcomes. FUNDING/BACKGROUND:This study was funded by the National Institutes of Health and NYU Grossman School of Medicine institutional funds. Reagents and instruments were provided in kind by Bio-Rad.
PMID: 40010345
ISSN: 2666-6340
CID: 5801032
High-fidelity, large-scale targeted profiling of microsatellites
Loh, Caitlin A; Shields, Danielle A; Schwing, Adam; Evrony, Gilad D
Microsatellites are highly mutable sequences that can serve as markers for relationships among individuals or cells within a population. The accuracy and resolution of reconstructing these relationships depends on the fidelity of microsatellite profiling and the number of microsatellites profiled. However, current methods for targeted profiling of microsatellites incur significant "stutter" artifacts that interfere with accurate genotyping, and sequencing costs preclude whole-genome microsatellite profiling of a large number of samples. We developed a novel method for accurate and cost-effective targeted profiling of a panel of more than 150,000 microsatellites per sample, along with a computational tool for designing large-scale microsatellite panels. Our method addresses the greatest challenge for microsatellite profiling-"stutter" artifacts-with a low-temperature hybridization capture that significantly reduces these artifacts. We also developed a computational tool for accurate genotyping of the resulting microsatellite sequencing data that uses an ensemble approach integrating three microsatellite genotyping tools, which we optimize by analysis of de novo microsatellite mutations in human trios. Altogether, our suite of experimental and computational tools enables high-fidelity, large-scale profiling of microsatellites, which may find utility in diverse applications such as lineage tracing, population genetics, ecology, and forensics.
PMID: 39013593
ISSN: 1549-5469
CID: 5680192
DNA mismatch and damage patterns revealed by single-molecule sequencing
Liu, Mei Hong; Costa, Benjamin M; Bianchini, Emilia C; Choi, Una; Bandler, Rachel C; Lassen, Emilie; Grońska-Pęski, Marta; Schwing, Adam; Murphy, Zachary R; Rosenkjær, Daniel; Picciotto, Shany; Bianchi, Vanessa; Stengs, Lucie; Edwards, Melissa; Nunes, Nuno Miguel; Loh, Caitlin A; Truong, Tina K; Brand, Randall E; Pastinen, Tomi; Wagner, J Richard; Skytte, Anne-Bine; Tabori, Uri; Shoag, Jonathan E; Evrony, Gilad D
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
PMID: 38867045
ISSN: 1476-4687
CID: 5669192
Ultra-Rapid Droplet Digital PCR Enables Intraoperative Tumor Quantification
Murphy, Zachary R; Bianchini, Emilia C; Smith, Andrew; Körner, Lisa I; Russell, Teresa; Reinecke, David; Wang, Yuxiu; Snuderl, Matija; Orringer, Daniel A; Evrony, Gilad D
The diagnosis and treatment of tumors often depends on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. To address this gap, we developed Ultra-Rapid droplet digital PCR (UR-ddPCR), which can be completed in 15 minutes from tissue to result with an accuracy comparable to standard ddPCR. We demonstrate UR-ddPCR assays for the IDH1 R132H and BRAF V600E clonal mutations that are present in many low-grade gliomas and melanomas, respectively. We illustrate the clinical feasibility of UR-ddPCR by performing it intraoperatively for 13 glioma cases. We further combine UR-ddPCR measurements with UR-stimulated Raman histology intraoperatively to estimate tumor cell densities in addition to tumor cell percentages. We anticipate that UR-ddPCR, along with future refinements in assay instrumentation, will enable novel point-of-care diagnostics and the development of molecularly-guided surgeries that improve clinical outcomes.
PMCID:11160868
PMID: 38854127
CID: 5668772
Pangenome graphs improve the analysis of structural variants in rare genetic diseases
Groza, Cristian; Schwendinger-Schreck, Carl; Cheung, Warren A; Farrow, Emily G; Thiffault, Isabelle; Lake, Juniper; Rizzo, William B; Evrony, Gilad; Curran, Tom; Bourque, Guillaume; Pastinen, Tomi
Rare DNA alterations that cause heritable diseases are only partially resolvable by clinical next-generation sequencing due to the difficulty of detecting structural variation (SV) in all genomic contexts. Long-read, high fidelity genome sequencing (HiFi-GS) detects SVs with increased sensitivity and enables assembling personal and graph genomes. We leverage standard reference genomes, public assemblies (n = 94) and a large collection of HiFi-GS data from a rare disease program (Genomic Answers for Kids, GA4K, n = 574 assemblies) to build a graph genome representing a unified SV callset in GA4K, identify common variation and prioritize SVs that are more likely to cause genetic disease (MAF < 0.01). Using graphs, we obtain a higher level of reproducibility than the standard reference approach. We observe over 200,000 SV alleles unique to GA4K, including nearly 1000 rare variants that impact coding sequence. With improved specificity for rare SVs, we isolate 30 candidate SVs in phenotypically prioritized genes, including known disease SVs. We isolate a novel diagnostic SV in KMT2E, demonstrating use of personal assemblies coupled with pangenome graphs for rare disease genomics. The community may interrogate our pangenome with additional assemblies to discover new SVs within the allele frequency spectrum relevant to genetic diseases.
PMCID:10803329
PMID: 38253606
ISSN: 2041-1723
CID: 5624712
Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort
Cheung, Warren A; Johnson, Adam F; Rowell, William J; Farrow, Emily; Hall, Richard; Cohen, Ana S A; Means, John C; Zion, Tricia N; Portik, Daniel M; Saunders, Christopher T; Koseva, Boryana; Bi, Chengpeng; Truong, Tina K; Schwendinger-Schreck, Carl; Yoo, Byunggil; Johnston, Jeffrey J; Gibson, Margaret; Evrony, Gilad; Rizzo, William B; Thiffault, Isabelle; Younger, Scott T; Curran, Tom; Wenger, Aaron M; Grundberg, Elin; Pastinen, Tomi
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
PMCID:10226990
PMID: 37248219
ISSN: 2041-1723
CID: 5541202
Single duplex DNA sequencing with CODEC detects mutations with high sensitivity
Bae, Jin H; Liu, Ruolin; Roberts, Eugenia; Nguyen, Erica; Tabrizi, Shervin; Rhoades, Justin; Blewett, Timothy; Xiong, Kan; Gydush, Gregory; Shea, Douglas; An, Zhenyi; Patel, Sahil; Cheng, Ju; Sridhar, Sainetra; Liu, Mei Hong; Lassen, Emilie; Skytte, Anne-Bine; Grońska-Pęski, Marta; Shoag, Jonathan E; Evrony, Gilad D; Parsons, Heather A; Mayer, Erica L; Makrigiorgos, G Mike; Golub, Todd R; Adalsteinsson, Viktor A
Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.
PMID: 37106072
ISSN: 1546-1718
CID: 5465432
Biochemical characterization of two novel mutations in the human high-affinity choline transporter 1 identified in a patient with congenital myasthenic syndrome
Rizvi, Midhat; Truong, Tina K; Zhou, Janet; Batta, Manav; Moran, Ellen S; Pappas, John; Chu, Mary Lynn; Caluseriu, Oana; Evrony, Gilad D; Leslie, Elaine M; Cordat, Emmanuelle
Congenital myasthenic syndrome (CMS) is a heterogeneous condition associated with 34 different genes, including SLC5A7, which encodes the high affinity choline transporter 1 (CHT1). CHT1 is expressed in presynaptic neurons of the neuromuscular junction where it uses the inward sodium gradient to re-uptake choline. Bi-allelic CHT1 mutations often lead to neonatal lethality, and less commonly to non-lethal motor weakness and developmental delays. Here, we report detailed biochemical characterization of two novel mutations in CHT1, p.I294T and p.D349N, that we identified in an 11 year-old patient with a history of neonatal respiratory distress, and subsequent hypotonia and global developmental delay. Heterologous expression of each CHT1 mutant in human embryonic kidney cells showed two different mechanisms of reduced protein function. The p.I294T CHT1 mutant transporter function was detectable, but its abundance and half-life were significantly reduced. In contrast, the p.D349N CHT1 mutant was abundantly expressed at the cell membrane, but transporter function was absent. The residual function of the p.I294T CHT1 mutant may explain the non-lethal form of CMS in this patient, and the divergent mechanisms of reduced CHT1 function that we identified may guide future functional studies of the CHT1 myasthenic syndrome. Based on these in vitro studies that provided a diagnosis, treatment with cholinesterase inhibitor together with physical and occupational therapy significantly improved the patient's strength and quality of life.
PMID: 36611016
ISSN: 1460-2083
CID: 5433572
Single-strand mismatch and damage patterns revealed by single-molecule DNA sequencing
Liu, Mei Hong; Costa, Benjamin; Choi, Una; Bandler, Rachel C; Lassen, Emilie; Grońska-Pęski, Marta; Schwing, Adam; Murphy, Zachary R; Rosenkjær, Daniel; Picciotto, Shany; Bianchi, Vanessa; Stengs, Lucie; Edwards, Melissa; Loh, Caitlin A; Truong, Tina K; Brand, Randall E; Pastinen, Tomi; Wagner, J Richard; Skytte, Anne-Bine; Tabori, Uri; Shoag, Jonathan E; Evrony, Gilad D
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases1-4. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired5. However, current DNA sequencing technologies cannot resolve these initial single-strand events. Here, we developed a single-molecule, long-read sequencing method that achieves single-molecule fidelity for single-base substitutions when present in either one or both strands of the DNA. It also detects single-strand cytosine deamination events, a common type of DNA damage. We profiled 110 samples from diverse tissues, including from individuals with cancer-predisposition syndromes, and define the first single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumors deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples deficient in only polymerase proofreading. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. Since the double-strand DNA mutations interrogated by prior studies are only the endpoint of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable new studies of how mutations arise in a variety of contexts, especially in cancer and aging.
PMID: 36824744
ISSN: 2692-8205
CID: 5806342