Try a new search

Format these results:

Searched for:

person:evrong01

in-biosketch:yes

Total Results:

27


Single duplex DNA sequencing with CODEC detects mutations with high sensitivity

Bae, Jin H; Liu, Ruolin; Roberts, Eugenia; Nguyen, Erica; Tabrizi, Shervin; Rhoades, Justin; Blewett, Timothy; Xiong, Kan; Gydush, Gregory; Shea, Douglas; An, Zhenyi; Patel, Sahil; Cheng, Ju; Sridhar, Sainetra; Liu, Mei Hong; Lassen, Emilie; Skytte, Anne-Bine; Grońska-Pęski, Marta; Shoag, Jonathan E; Evrony, Gilad D; Parsons, Heather A; Mayer, Erica L; Makrigiorgos, G Mike; Golub, Todd R; Adalsteinsson, Viktor A
Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.
PMID: 37106072
ISSN: 1546-1718
CID: 5465432

Biochemical characterization of two novel mutations in the human high-affinity choline transporter 1 identified in a patient with congenital myasthenic syndrome

Rizvi, Midhat; Truong, Tina K; Zhou, Janet; Batta, Manav; Moran, Ellen S; Pappas, John; Chu, Mary Lynn; Caluseriu, Oana; Evrony, Gilad D; Leslie, Elaine M; Cordat, Emmanuelle
Congenital myasthenic syndrome (CMS) is a heterogeneous condition associated with 34 different genes, including SLC5A7, which encodes the high affinity choline transporter 1 (CHT1). CHT1 is expressed in presynaptic neurons of the neuromuscular junction where it uses the inward sodium gradient to re-uptake choline. Bi-allelic CHT1 mutations often lead to neonatal lethality, and less commonly to non-lethal motor weakness and developmental delays. Here, we report detailed biochemical characterization of two novel mutations in CHT1, p.I294T and p.D349N, that we identified in an 11 year-old patient with a history of neonatal respiratory distress, and subsequent hypotonia and global developmental delay. Heterologous expression of each CHT1 mutant in human embryonic kidney cells showed two different mechanisms of reduced protein function. The p.I294T CHT1 mutant transporter function was detectable, but its abundance and half-life were significantly reduced. In contrast, the p.D349N CHT1 mutant was abundantly expressed at the cell membrane, but transporter function was absent. The residual function of the p.I294T CHT1 mutant may explain the non-lethal form of CMS in this patient, and the divergent mechanisms of reduced CHT1 function that we identified may guide future functional studies of the CHT1 myasthenic syndrome. Based on these in vitro studies that provided a diagnosis, treatment with cholinesterase inhibitor together with physical and occupational therapy significantly improved the patient's strength and quality of life.
PMID: 36611016
ISSN: 1460-2083
CID: 5433572

Serial enrichment of heteroduplex DNA using a MutS-magnetic bead system

Murphy, Zachary R; Shields, Danielle A; Evrony, Gilad D
Numerous applications in molecular biology and genomics require characterization of mutant DNA molecules present at low levels within a larger sample of non-mutant DNA. This is often achieved either by selectively amplifying mutant DNA, or by sequencing all the DNA followed by computational identification of the mutant DNA. However, selective amplification is challenging for insertions and deletions (indels). Additionally, sequencing all the DNA in a sample may not be cost effective when only the presence of a mutation needs to be ascertained rather than its allelic fraction. The MutS protein evolved to detect DNA heteroduplexes in which the two DNA strands are mismatched. Prior methods have utilized MutS to enrich mutant DNA by hybridizing mutant to non-mutant DNA to create heteroduplexes. However, the purity of heteroduplex DNA these methods achieve is limited because they can only feasibly perform one or two enrichment cycles. We developed a MutS-magnetic bead system that enables rapid serial enrichment cycles. With six cycles, we achieve complete purification of heteroduplex indel DNA originally present at a 5% fraction and over 40-fold enrichment of heteroduplex DNA originally present at a 1% fraction. This system may enable novel approaches for enriching mutant DNA for targeted sequencing. This article is protected by copyright. All rights reserved.
PMID: 36317440
ISSN: 1860-7314
CID: 5358492

An HNRNPK-specific DNA methylation signature makes sense of missense variants and expands the phenotypic spectrum of Au-Kline syndrome

Choufani, Sanaa; McNiven, Vanda; Cytrynbaum, Cheryl; Jangjoo, Maryam; Adam, Margaret P; Bjornsson, Hans T; Harris, Jacqueline; Dyment, David A; Graham, Gail E; Nezarati, Marjan M; Aul, Ritu B; Castiglioni, Claudia; Breckpot, Jeroen; Devriendt, Koen; Stewart, Helen; Banos-Pinero, Benito; Mehta, Sarju; Sandford, Richard; Dunn, Carolyn; Mathevet, Remi; van Maldergem, Lionel; Piard, Juliette; Brischoux-Boucher, Elise; Vitobello, Antonio; Faivre, Laurence; Bournez, Marie; Tran-Mau, Frederic; Maystadt, Isabelle; Fernández-Jaén, Alberto; Alvarez, Sara; García-Prieto, Irene Díez; Alkuraya, Fowzan S; Alsaif, Hessa S; Rahbeeni, Zuhair; El-Akouri, Karen; Al-Mureikhi, Mariam; Spillmann, Rebecca C; Shashi, Vandana; Sanchez-Lara, Pedro A; Graham, John M; Roberts, Amy; Chorin, Odelia; Evrony, Gilad D; Kraatari-Tiri, Minna; Dudding-Byth, Tracy; Richardson, Anamaria; Hunt, David; Hamilton, Laura; Dyack, Sarah; Mendelsohn, Bryce A; Rodríguez, Nicolás; Sánchez-Martínez, Rosario; Tenorio-Castaño, Jair; Nevado, Julián; Lapunzina, Pablo; Tirado, Pilar; Carminho Amaro Rodrigues, Maria-Teresa; Quteineh, Lina; Innes, A Micheil; Kline, Antonie D; Au, P Y Billie; Weksberg, Rosanna
Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.
PMID: 36130591
ISSN: 1537-6605
CID: 5335432

Applications of Single-Cell DNA Sequencing

Evrony, Gilad D; Hinch, Anjali Gupta; Luo, Chongyuan
Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 22 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
PMID: 33722077
ISSN: 1545-293x
CID: 4817472

A recurrent, homozygous EMC10 frameshift variant is associated with a syndrome of developmental delay with variable seizures and dysmorphic features

Shao, Diane D; Straussberg, Rachel; Ahmed, Hind; Khan, Amjad; Tian, Songhai; Hill, R Sean; Smith, Richard S; Majmundar, Amar J; Ameziane, Najim; Neil, Jennifer E; Yang, Edward; Al Tenaiji, Amal; Jamuar, Saumya S; Schlaeger, Thorsten M; Al-Saffar, Muna; Hovel, Iris; Al-Shamsi, Aisha; Basel-Salmon, Lina; Amir, Achiya Z; Rento, Lariza M; Lim, Jiin Ying; Ganesan, Indra; Shril, Shirlee; Evrony, Gilad; Barkovich, A James; Bauer, Peter; Hildebrandt, Friedhelm; Dong, Min; Borck, Guntram; Beetz, Christian; Al-Gazali, Lihadh; Eyaid, Wafaa; Walsh, Christopher A
PURPOSE/OBJECTIVE:The endoplasmic reticulum membrane complex (EMC) is a highly conserved, multifunctional 10-protein complex related to membrane protein biology. In seven families, we identified 13 individuals with highly overlapping phenotypes who harbor a single identical homozygous frameshift variant in EMC10. METHODS:Using exome, genome, and Sanger sequencing, a recurrent frameshift EMC10 variant was identified in affected individuals in an international cohort of consanguineous families. Multiple families were independently identified and connected via Matchmaker Exchange and internal databases. We assessed the effect of the frameshift variant on EMC10 RNA and protein expression and evaluated EMC10 expression in normal human brain tissue using immunohistochemistry. RESULTS:A homozygous variant EMC10 c.287delG (Refseq NM_206538.3, p.Gly96Alafs*9) segregated with affected individuals in each family, who exhibited a phenotypic spectrum of intellectual disability (ID) and global developmental delay (GDD), variable seizures and variable dysmorphic features (elongated face, curly hair, cubitus valgus, and arachnodactyly). The variant arose on two founder haplotypes and results in significantly reduced EMC10 RNA expression and an unstable truncated EMC10 protein. CONCLUSION/CONCLUSIONS:We propose that a homozygous loss-of-function variant in EMC10 causes a novel syndromic neurodevelopmental phenotype. Remarkably, the recurrent variant is likely the result of a hypermutable site and arose on distinct founder haplotypes.
PMID: 33531666
ISSN: 1530-0366
CID: 4793132

Complex Autoinflammatory Syndrome Unveils Fundamental Principles of JAK1 Kinase Transcriptional and Biochemical Function

Gruber, Conor N; Calis, Jorg J A; Buta, Sofija; Evrony, Gilad; Martin, Jerome C; Uhl, Skyler A; Caron, Rachel; Jarchin, Lauren; Dunkin, David; Phelps, Robert; Webb, Bryn D; Saland, Jeffrey M; Merad, Miriam; Orange, Jordan S; Mace, Emily M; Rosenberg, Brad R; Gelb, Bruce D; Bogunovic, Dusan
Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.
PMCID:7398039
PMID: 32750333
ISSN: 1097-4180
CID: 4614282

Transcriptome sequencing identifies a noncoding, deep intronic variant in CLCN7 causing autosomal recessive osteopetrosis

Chorin, Odelia; Yachelevich, Naomi; Mohamed, Khaled; Moscatelli, Ilana; Pappas, John; Henriksen, Kim; Evrony, Gilad D
BACKGROUND:Over half of children with rare genetic diseases remain undiagnosed despite maximal clinical evaluation and DNA-based genetic testing. As part of an Undiagnosed Diseases Program applying transcriptome (RNA) sequencing to identify the causes of these unsolved cases, we studied a child with severe infantile osteopetrosis leading to cranial nerve palsies, bone deformities, and bone marrow failure, for whom whole-genome sequencing was nondiagnostic. METHODS:We performed transcriptome (RNA) sequencing of whole blood followed by analysis of aberrant transcript isoforms and osteoclast functional studies. RESULTS:We identified a pathogenic deep intronic variant in CLCN7 creating an unexpected, frameshifting pseudoexon causing complete loss of function. Functional studies, including osteoclastogenesis and bone resorption assays, confirmed normal osteoclast differentiation but loss of osteoclast function. CONCLUSION/CONCLUSIONS:This is the first report of a pathogenic deep intronic variant in CLCN7, and our approach provides a model for systematic identification of noncoding variants causing osteopetrosis-a disease for which molecular-genetic diagnosis can be pivotal for potentially curative hematopoietic stem cell transplantation. Our work illustrates that cryptic splice variants may elude DNA-only sequencing and supports broad first-line use of transcriptome sequencing for children with undiagnosed diseases.
PMID: 32691986
ISSN: 2324-9269
CID: 4532112

Correction: DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients

Urreizti, Roser; Mayer, Klaus; Evrony, Gilad D; Said, Edith; Castilla-Vallmanya, Laura; Cody, Neal A L; Plasencia, Guillem; Gelb, Bruce D; Grinberg, Daniel; Brinkmann, Ulrich; Webb, Bryn D; Balcells, Susanna
Following the publication of the article, it was noted that the last column in Table 1, the total % should have read 5/8 (62.5) for the 'Epilepsy' row, and not 5.7 (71.4). This has now been amended in the HTML and PDF of the original article.
PMID: 31477843
ISSN: 1476-5438
CID: 4067022

DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients

Urreizti, Roser; Mayer, Klaus; Evrony, Gilad D; Said, Edith; Castilla-Vallmanya, Laura; Cody, Neal A L; Plasencia, Guillem; Gelb, Bruce D; Grinberg, Daniel; Brinkmann, Ulrich; Webb, Bryn D; Balcells, Susanna
DPH1variants have been associated with an ultra-rare and severe neurodevelopmental disorder, mainly characterized by variable developmental delay, short stature, dysmorphic features, and sparse hair. We have identified four new patients (from two different families) carrying novel variants in DPH1, enriching the clinical delineation of the DPH1 syndrome. Using a diphtheria toxin ADP-ribosylation assay, we have analyzed the activity of seven identified variants and demonstrated compromised function for five of them [p.(Leu234Pro); p.(Ala411Argfs*91); p.(Leu164Pro); p.(Leu125Pro); and p.(Tyr112Cys)]. We have built a homology model of the human DPH1-DPH2 heterodimer and have performed molecular dynamics simulations to study the effect of these variants on the catalytic sites as well as on the interactions between subunits of the heterodimer. The results show correlation between loss of activity, reduced size of the opening to the catalytic site, and changes in the size of the catalytic site with clinical severity. This is the first report of functional tests of DPH1 variants associated with the DPH1 syndrome. We demonstrate that the in vitro assay for DPH1 protein activity, together with structural modeling, are useful tools for assessing the effect of the variants on DPH1 function and may be used for predicting patient outcomes and prognoses.
PMID: 30877278
ISSN: 1476-5438
CID: 3733592