Try a new search

Format these results:

Searched for:

person:fausta04

in-biosketch:true

Total Results:

39


Two-Year Longitudinal Outcomes of Subjective Cognitive Decline in Hispanics Compared to Non-hispanic Whites

Boza-Calvo, Carolina; Faustin, Arline; Zhang, Yian; Briggs, Anthony Q; Bernard, Mark A; Bubu, Omonigho M; Rao, Julia A; Gurin, Lindsey; Tall, Sakina Ouedraogo; Osorio, Ricardo S; Marsh, Karyn; Shao, Yongzhao; Masurkar, Arjun V
BACKGROUND:Subjective cognitive decline (SCD), considered a preclinical dementia stage, is less understood in Hispanics, a high-risk group for dementia. We investigated SCD to mild cognitive impairment (MCI) progression risk, as well as baseline and longitudinal features of depressive symptoms, SCD complaints, and objective cognitive performance among Hispanics compared to non-Hispanic Whites (NHW). METHODS:Hispanic (n = 23) and NHW (n = 165) SCD participants were evaluated at baseline and 2-year follow-up. Evaluations assessed function, depressive symptoms, SCD, and objective cognitive performance. RESULTS:Hispanic ethnicity associated with a significantly increased risk of 2-year progression of SCD to MCI compared to NHW. This increased risk associated with increased depressive symptoms, distinctive SCD features, and elevated amnestic and non-amnestic objective cognitive decline. This supports further research to refine the assessment of preclinical dementia in this high-risk group.
PMID: 39043156
ISSN: 0891-9887
CID: 5676222

Frontal-Variant Alzheimer's Disease: Subregional Distribution of Entorhinal-CA1 Pathology and Pathophysiological Implications

Reyes, Isabel; Faustin, Arline; Tian, Chengju; Masurkar, Arjun V
PMID: 38835223
ISSN: 1545-7222
CID: 5664442

Prognostic value of DNA methylation subclassification, aneuploidy, and CDKN2A/B homozygous deletion in predicting clinical outcome of IDH mutant astrocytomas

Galbraith, Kristyn; Garcia, Mekka; Wei, Siyu; Chen, Anna; Schroff, Chanel; Serrano, Jonathan; Pacione, Donato; Placantonakis, Dimitris G; William, Christopher M; Faustin, Arline; Zagzag, David; Barbaro, Marissa; Eibl, Maria Del Pilar Guillermo Prieto; Shirahata, Mitsuaki; Reuss, David; Tran, Quynh T; Alom, Zahangir; von Deimling, Andreas; Orr, Brent A; Sulman, Erik P; Golfinos, John G; Orringer, Daniel A; Jain, Rajan; Lieberman, Evan; Feng, Yang; Snuderl, Matija
BACKGROUND:Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma. METHODS:We analyzed 98 IDH mutant astrocytomas diagnosed at NYU Langone Health between 2014 and 2022. We reviewed DNA methylation subclass, CDKN2A/B homozygous deletion, and ploidy and correlated molecular biomarkers with histological grade, progression free (PFS), and overall (OS) survival. Findings were confirmed using 2 independent validation cohorts. RESULTS:There was no significant difference in OS or PFS when stratified by histologic WHO grade alone, copy number complexity, or extent of resection. OS was significantly different when patients were stratified either by CDKN2A/B homozygous deletion or by DNA methylation subclass (P value = .0286 and .0016, respectively). None of the molecular biomarkers were associated with significantly better PFS, although DNA methylation classification showed a trend (P value = .0534). CONCLUSIONS:The current WHO recognized grading criteria for IDH mutant astrocytomas show limited prognostic value. Stratification based on DNA methylation shows superior prognostic value for OS.
PMCID:11145445
PMID: 38243818
ISSN: 1523-5866
CID: 5664582

The influence of APOEε4 on the pTau interactome in sporadic Alzheimer's disease

Thierry, Manon; Ponce, Jackeline; Martà-Ariza, Mitchell; Askenazi, Manor; Faustin, Arline; Leitner, Dominique; Pires, Geoffrey; Kanshin, Evgeny; Drummond, Eleanor; Ueberheide, Beatrix; Wisniewski, Thomas
APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aβ pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aβ 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aβ-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.
PMCID:11108952
PMID: 38772917
ISSN: 1432-0533
CID: 5654472

Researching COVID to enhance recovery (RECOVER) tissue pathology study protocol: Rationale, objectives, and design

Troxel, Andrea B; Bind, Marie-Abele C; Flotte, Thomas J; Cordon-Cardo, Carlos; Decker, Lauren A; Finn, Aloke V; Padera, Robert F; Reichard, R Ross; Stone, James R; Adolphi, Natalie L; Casimero, Faye Victoria C; Crary, John F; Elifritz, Jamie; Faustin, Arline; Ghosh, Saikat Kumar B; Krausert, Amanda; Martinez-Lage, Maria; Melamed, Jonathan; Mitchell, Roger A; Sampson, Barbara A; Seifert, Alan C; Simsir, Aylin; Adams, Cheryle; Haasnoot, Stephanie; Hafner, Stephanie; Siciliano, Michelle A; Vallejos, Brittany B; Del Boccio, Phoebe; Lamendola-Essel, Michelle F; Young, Chloe E; Kewlani, Deepshikha; Akinbo, Precious A; Parent, Brendan; Chung, Alicia; Cato, Teresa C; Mudumbi, Praveen C; Esquenazi-Karonika, Shari; Wood, Marion J; Chan, James; Monteiro, Jonathan; Shinnick, Daniel J; Thaweethai, Tanayott; Nguyen, Amber N; Fitzgerald, Megan L; Perlowski, Alice A; Stiles, Lauren E; Paskett, Moira L; Katz, Stuart D; Foulkes, Andrea S; ,
IMPORTANCE/OBJECTIVE:SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or organ dysfunction after the acute phase of infection, termed Post-Acute Sequelae of SARS-CoV-2 (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are poorly understood. The objectives of the Researching COVID to Enhance Recovery (RECOVER) tissue pathology study (RECOVER-Pathology) are to: (1) characterize prevalence and types of organ injury/disease and pathology occurring with PASC; (2) characterize the association of pathologic findings with clinical and other characteristics; (3) define the pathophysiology and mechanisms of PASC, and possible mediation via viral persistence; and (4) establish a post-mortem tissue biobank and post-mortem brain imaging biorepository. METHODS:RECOVER-Pathology is a cross-sectional study of decedents dying at least 15 days following initial SARS-CoV-2 infection. Eligible decedents must meet WHO criteria for suspected, probable, or confirmed infection and must be aged 18 years or more at the time of death. Enrollment occurs at 7 sites in four U.S. states and Washington, DC. Comprehensive autopsies are conducted according to a standardized protocol within 24 hours of death; tissue samples are sent to the PASC Biorepository for later analyses. Data on clinical history are collected from the medical records and/or next of kin. The primary study outcomes include an array of pathologic features organized by organ system. Causal inference methods will be employed to investigate associations between risk factors and pathologic outcomes. DISCUSSION/CONCLUSIONS:RECOVER-Pathology is the largest autopsy study addressing PASC among US adults. Results of this study are intended to elucidate mechanisms of organ injury and disease and enhance our understanding of the pathophysiology of PASC.
PMCID:10781091
PMID: 38198481
ISSN: 1932-6203
CID: 5628642

Localized proteomic differences in the choroid plexus of Alzheimer's disease and epilepsy patients

Leitner, Dominique F.; Kanshin, Evgeny; Faustin, Arline; Thierry, Manon; Friedman, Daniel; Devore, Sasha; Ueberheide, Beatrix; Devinsky, Orrin; Wisniewski, Thomas
Introduction: Alzheimer's disease (AD) and epilepsy are reciprocally related. Among sporadic AD patients, clinical seizures occur in 10"“22% and subclinical epileptiform abnormalities occur in 22"“54%. Cognitive deficits, especially short-term memory impairments, occur in most epilepsy patients. Common neurophysiological and molecular mechanisms occur in AD and epilepsy. The choroid plexus undergoes pathological changes in aging, AD, and epilepsy, including decreased CSF turnover, amyloid beta (Aβ), and tau accumulation due to impaired clearance and disrupted CSF amino acid homeostasis. This pathology may contribute to synaptic dysfunction in AD and epilepsy. Methods: We evaluated control (n = 8), severe AD (n = 8; A3, B3, C3 neuropathology), and epilepsy autopsy cases (n = 12) using laser capture microdissection (LCM) followed by label-free quantitative mass spectrometry on the choroid plexus adjacent to the hippocampus at the lateral geniculate nucleus level. Results: Proteomics identified 2,459 proteins in the choroid plexus. At a 5% false discovery rate (FDR), 616 proteins were differentially expressed in AD vs. control, 1 protein in epilepsy vs. control, and 438 proteins in AD vs. epilepsy. There was more variability in the epilepsy group across syndromes. The top 20 signaling pathways associated with differentially expressed proteins in AD vs. control included cell metabolism pathways; activated fatty acid beta-oxidation (p = 2.00 x 10−7, z = 3.00), and inhibited glycolysis (p = 1.00 x 10−12, z = −3.46). For AD vs. epilepsy, the altered pathways included cell metabolism pathways, activated complement system (p = 5.62 x 10−5, z = 2.00), and pathogen-induced cytokine storm (p = 2.19 x 10−2, z = 3.61). Of the 617 altered proteins in AD and epilepsy vs. controls, 497 (81%) were positively correlated (p < 0.0001, R2 = 0.27). Discussion: We found altered signaling pathways in the choroid plexus of severe AD cases and many correlated changes in the protein expression of cell metabolism pathways in AD and epilepsy cases. The shared molecular mechanisms should be investigated further to distinguish primary pathogenic changes from the secondary ones. These mechanisms could inform novel therapeutic strategies to prevent disease progression or restore normal function. A focus on dual-diagnosed AD/epilepsy cases, specific epilepsy syndromes, such as temporal lobe epilepsy, and changes across different severity levels in AD and epilepsy would add to our understanding.
SCOPUS:85167525209
ISSN: 1664-2295
CID: 5619802

Reasearching COVID to enhance recorvery (RECOVER) autopsy tissue pathology study protocol: Rationale, objectives, and design [PrePrint]

Troxel, Andrea B; Bind, Marie-Abele C; Flotte, Thomas J; Cordon-Cardo, Carlos; Decker, Lauren A; Finn, Aloke V; Padera, Robert F; Reichard, R. Ross; Stone, James R; Adolphi, Natalie L; Casimero, Faye; Crary, John F; Elifritz, Jamie; Faustin, Arline; Kumar B Ghosh, Saikat; Krausert, Amanda; Martinez-Lage, Maria; Melamed, Jonathan; Mitchell Jr, Roger A; Sampson, Barbara A; Seifert, Alan C; Simsir, Aylin; Adams, Cheryle; Haasnoot, Stephanie; Hafner, Stephanie; Siciliano, Michelle A; Vallejos, Britanny B; Del Boccio, Pheobe; Lamendola-Essel; Michelle F; Young, Chloe E; Kewlani, Deepshikha; Akinbo, Precious A; Parent, Brendan; Chung, Alicia; Cato, Teresa C; Mudumbi, Praveen; Esquenazi-Karonika, Shari; Wood, Marion J; Chan, James; Monteiro, Jonathan; Shinnick, Daniel J; Thaweethai, Tanayott; Nguyen, Amber N; Fitzgerald, Megan L; Perlowski, Alice A; Stiles, Lauren E; Paskett, Moira L, Katz, Stuart D; Foulkes, Andrea S
ORIGINAL:0017086
ISSN: n/a
CID: 5573572

Clinical utility of whole-genome DNA methylation profiling as a primary molecular diagnostic assay for central nervous system tumors-A prospective study and guidelines for clinical testing

Galbraith, Kristyn; Vasudevaraja, Varshini; Serrano, Jonathan; Shen, Guomiao; Tran, Ivy; Abdallat, Nancy; Wen, Mandisa; Patel, Seema; Movahed-Ezazi, Misha; Faustin, Arline; Spino-Keeton, Marissa; Roberts, Leah Geiser; Maloku, Ekrem; Drexler, Steven A; Liechty, Benjamin L; Pisapia, David; Krasnozhen-Ratush, Olga; Rosenblum, Marc; Shroff, Seema; Boué, Daniel R; Davidson, Christian; Mao, Qinwen; Suchi, Mariko; North, Paula; Hopp, Amanda; Segura, Annette; Jarzembowski, Jason A; Parsons, Lauren; Johnson, Mahlon D; Mobley, Bret; Samore, Wesley; McGuone, Declan; Gopal, Pallavi P; Canoll, Peter D; Horbinski, Craig; Fullmer, Joseph M; Farooqui, Midhat S; Gokden, Murat; Wadhwani, Nitin R; Richardson, Timothy E; Umphlett, Melissa; Tsankova, Nadejda M; DeWitt, John C; Sen, Chandra; Placantonakis, Dimitris G; Pacione, Donato; Wisoff, Jeffrey H; Teresa Hidalgo, Eveline; Harter, David; William, Christopher M; Cordova, Christine; Kurz, Sylvia C; Barbaro, Marissa; Orringer, Daniel A; Karajannis, Matthias A; Sulman, Erik P; Gardner, Sharon L; Zagzag, David; Tsirigos, Aristotelis; Allen, Jeffrey C; Golfinos, John G; Snuderl, Matija
BACKGROUND/UNASSIGNED:Central nervous system (CNS) cancer is the 10th leading cause of cancer-associated deaths for adults, but the leading cause in pediatric patients and young adults. The variety and complexity of histologic subtypes can lead to diagnostic errors. DNA methylation is an epigenetic modification that provides a tumor type-specific signature that can be used for diagnosis. METHODS/UNASSIGNED:We performed a prospective study using DNA methylation analysis as a primary diagnostic method for 1921 brain tumors. All tumors received a pathology diagnosis and profiling by whole genome DNA methylation, followed by next-generation DNA and RNA sequencing. Results were stratified by concordance between DNA methylation and histopathology, establishing diagnostic utility. RESULTS/UNASSIGNED:Of the 1602 cases with a World Health Organization histologic diagnosis, DNA methylation identified a diagnostic mismatch in 225 cases (14%), 78 cases (5%) did not classify with any class, and in an additional 110 (7%) cases DNA methylation confirmed the diagnosis and provided prognostic information. Of 319 cases carrying 195 different descriptive histologic diagnoses, DNA methylation provided a definitive diagnosis in 273 (86%) cases, separated them into 55 methylation classes, and changed the grading in 58 (18%) cases. CONCLUSIONS/UNASSIGNED:DNA methylation analysis is a robust method to diagnose primary CNS tumors, improving diagnostic accuracy, decreasing diagnostic errors and inconclusive diagnoses, and providing prognostic subclassification. This study provides a framework for inclusion of DNA methylation profiling as a primary molecular diagnostic test into professional guidelines for CNS tumors. The benefits include increased diagnostic accuracy, improved patient management, and refinements in clinical trial design.
PMCID:10355794
PMID: 37476329
ISSN: 2632-2498
CID: 5536102

Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease

Sadick, Jessica S; O'Dea, Michael R; Hasel, Philip; Dykstra, Taitea; Faustin, Arline; Liddelow, Shane A
Resolving glial contributions to Alzheimer's disease (AD) is necessary because changes in neuronal function, such as reduced synaptic density, altered electrophysiological properties, and degeneration, are not entirely cell autonomous. To improve understanding of transcriptomic heterogeneity in glia during AD, we used single-nuclei RNA sequencing (snRNA-seq) to characterize astrocytes and oligodendrocytes from apolipoprotein (APOE) Ɛ2/3 human AD and age- and genotype-matched non-symptomatic (NS) brains. We enriched astrocytes before sequencing and characterized pathology from the same location as the sequenced material. We characterized baseline heterogeneity in both astrocytes and oligodendrocytes and identified global and subtype-specific transcriptomic changes between AD and NS astrocytes and oligodendrocytes. We also took advantage of recent human and mouse spatial transcriptomics resources to localize heterogeneous astrocyte subtypes to specific regions in the healthy and inflamed brain. Finally, we integrated our data with published AD snRNA-seq datasets, highlighting the power of combining datasets to resolve previously unidentifiable astrocyte subpopulations.
PMID: 35381189
ISSN: 1097-4199
CID: 5204852

Proteomic differences in hippocampus and cortex of sudden unexplained death in childhood

Leitner, Dominique F; William, Christopher; Faustin, Arline; Askenazi, Manor; Kanshin, Evgeny; Snuderl, Matija; McGuone, Declan; Wisniewski, Thomas; Ueberheide, Beatrix; Gould, Laura; Devinsky, Orrin
Sudden unexplained death in childhood (SUDC) is death of a child over 1 year of age that is unexplained after review of clinical history, circumstances of death, and complete autopsy with ancillary testing. Multiple etiologies may cause SUDC. SUDC and sudden unexpected death in epilepsy (SUDEP) share clinical and pathological features, suggesting some similarities in mechanism of death and possible abnormalities in hippocampus and cortex. To identify molecular signaling pathways, we performed label-free quantitative mass spectrometry on microdissected frontal cortex, hippocampal dentate gyrus (DG), and cornu ammonis (CA1-3) in SUDC (n = 19) and pediatric control cases (n = 19) with an explained cause of death. At a 5% false discovery rate (FDR), we found differential expression of 660 proteins in frontal cortex, 170 in DG, and 57 in CA1-3. Pathway analysis of altered proteins identified top signaling pathways associated with activated oxidative phosphorylation (p = 6.3 × 10-15, z = 4.08) and inhibited EIF2 signaling (p = 2.0 × 10-21, z = - 2.56) in frontal cortex, and activated acute phase response in DG (p = 8.5 × 10-6, z = 2.65) and CA1-3 (p = 4.7 × 10-6, z = 2.00). Weighted gene correlation network analysis (WGCNA) of clinical history indicated that SUDC-positive post-mortem virology (n = 4/17) had the most significant module in each brain region, with the top most significant associated with decreased mRNA metabolic processes (p = 2.8 × 10-5) in frontal cortex. Additional modules were associated with clinical history, including fever within 24 h of death (top: increased mitochondrial fission in DG, p = 1.8 × 10-3) and febrile seizure history (top: decreased small molecule metabolic processes in frontal cortex, p = 8.8 × 10-5) in all brain regions, neuropathological hippocampal findings in the DG (top: decreased focal adhesion, p = 1.9 × 10-3). Overall, cortical and hippocampal protein changes were present in SUDC cases and some correlated with clinical features. Our studies support that proteomic studies of SUDC cohorts can advance our understanding of the pathogenesis of these tragedies and may inform the development of preventive strategies.
PMCID:8953962
PMID: 35333953
ISSN: 1432-0533
CID: 5200692