Try a new search

Format these results:

Searched for:

person:fausta04

in-biosketch:true

Total Results:

35


Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP containing the ancestral DUF1220 domain in pineoblastoma [Meeting Abstract]

Snuderl, M; Kannan, K; Pfaff, E; Wang, S; Stafford, J; Serrano, J; Heguy, A; Ray, K; Faustin, A; Aminova, O; Dolgalev, I; Stapleton, S; Zagzag, D; Chiriboga, L; Gardner, S; Wisoff, J; Golfinos, J; Capper, D; Hovestadt, V; Rosenblum, M; Placantonakis, D; LeBoeuf, S; Papagiannakopoulos, T; Chavez, L; Ahsan, S; Eberhart, C; Pfister, S; Jones, D; Karajannis, M
BACKGROUND: Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. METHODS: We analyzed pediatric and adult pineoblastoma samples (n=23) using integrated genomic studies, including genome-wide DNA methylation profiling, whole-exome or whole-genome sequencing, and whole-transcriptome analysis. RESULTS: Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower grade pineal tumors and normal pineal gland. Recurrent somatic mutations were found in genes involved in PKA-and NF-kappaB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expression of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain. Whole-transcriptome analysis showed that homozygous loss of DROSHA led to distinct changes in RNA expression profile. Disruption of the DROSHA locus in human neural stem cells using the CRISPR/Cas9 system, led to decrease of the DROSHA protein, and massive loss of miRNAs. CONCLUSION: We identified recurrent homozygous deletions of DROSHA in pineoblastoma, suggesting that different mechanisms disrupting miRNA processing are involved in the pathogenesis of familial versus sporadic pineoblastoma. Furthermore, a novel microduplication of PDE4DIP leading to upregulation of DUF1220 protein suggests DUF1220 as a novel oncogenic driver in pineoblastoma
EMBASE:623098707
ISSN: 1523-5866
CID: 3211282

Cardiac arrhythmia and neuroexcitability gene variants in resected brain tissue from patients with sudden unexpected death in epilepsy (SUDEP)

Friedman, Daniel; Kannan, Kasthuri; Faustin, Arline; Shroff, Seema; Thomas, Cheddhi; Heguy, Adriana; Serrano, Jonathan; Snuderl, Matija; Devinsky, Orrin
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality in young adults. The exact mechanisms are unknown but death often follows a generalized tonic-clonic seizure. Proposed mechanisms include seizure-related respiratory, cardiac, autonomic, and arousal dysfunction. Genetic drivers underlying SUDEP risk are largely unknown. To identify potential SUDEP risk genes, we compared whole-exome sequences (WES) derived from formalin-fixed paraffin embedded surgical brain specimens of eight epilepsy patients who died from SUDEP with seven living controls matched for age at surgery, sex, year of surgery and lobe of resection. We compared identified variants from both groups filtering known polymorphisms from publicly available data as well as scanned for epilepsy and candidate SUDEP genes. In the SUDEP cohort, we identified mutually exclusive variants in genes involved in µ-opiod signaling, gamma-aminobutyric acid (GABA) and glutamate-mediated synaptic signaling, includingARRB2,ITPR1,GABRR2,SSTR5,GRIK1,CTNAP2,GRM8,GNAI2andGRIK5. In SUDEP patients we also identified variants in genes associated with cardiac arrhythmia, includingKCNMB1,KCNIP1,DPP6,JUP,F2, andTUBA3D, which were not present in living epilepsy controls. Our data shows that genomic analysis of brain tissue resected for seizure control can identify potential genetic biomarkers of SUDEP risk.
PMCID:5869741
PMID: 29619247
ISSN: 2056-7944
CID: 3025312

RECURRENT HOMOZYGOUS DELETION OF DROSHA AND MICRODUPLICATION OF PDE4DIP CONTAINING THE ANCESTRAL DUF1220 DOMAIN IN PINEOBLASTOMA [Meeting Abstract]

Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke; Wang, Shiyang; Stafford, James; Serrano, Jonathan; Heguy, Adriana; Ray, Karina; Faustin, Arline; Aminova, Olga; Dolgalev, Igor; Stapleton, Stacie; Zagzag, David; Chiriboga, Luis; Gardner, Sharon; Wisoff, Jeffrey; Golfinos, John; Capper, David; Hovestadt, Volker; Rosenblum, Marc; Placantonakis, Dimitris; LeBoeuf, Sarah; Papagiannakopoulos, Thales; Chavez, Lukas; Ahsan, Sama; Eberhart, Charles; Pfister, Stefan; Jones, David; Karajannis, Matthias
ISI:000438339000189
ISSN: 1522-8517
CID: 5525552

Filling A Void: Creating a Systematic Approach to Examining Post Mortem Brains of Unexpected Child Deaths [Meeting Abstract]

Faustin, Arline; Reichard, Ross; Thomas, Cheddhi; Shepherd, Timothy; O'Connell, Brooke; Crandall, Laura; McGuone, Declan; William, Christopher; Snuderl, Matija; Wisniewski, Thomas; Devinsky, Orrin
ISI:000404906900140
ISSN: 1554-6578
CID: 2645132

Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease

Drummond, Eleanor; Nayak, Shruti; Faustin, Arline; Pires, Geoffrey; A Hickman, Richard; Askenazi, Manor; Cohen, Mark; Haldiman, Tracy; Kim, Chae; Han, Xiaoxia; Shao, Yongzhao; Safar, Jiri G; Ueberheide, Beatrix; Wisniewski, Thomas
Rapidly progressive Alzheimer's disease (rpAD) is a particularly aggressive form of Alzheimer's disease, with a median survival time of 7-10 months after diagnosis. Why these patients have such a rapid progression of Alzheimer's disease is currently unknown. To further understand pathological differences between rpAD and typical sporadic Alzheimer's disease (sAD) we used localized proteomics to analyze the protein differences in amyloid plaques in rpAD and sAD. Label-free quantitative LC-MS/MS was performed on amyloid plaques microdissected from rpAD and sAD patients (n = 22 for each patient group) and protein expression differences were quantified. On average, 913 +/- 30 (mean +/- SEM) proteins were quantified in plaques from each patient and 279 of these proteins were consistently found in plaques from every patient. We found significant differences in protein composition between rpAD and sAD plaques. We found that rpAD plaques contained significantly higher levels of neuronal proteins (p = 0.0017) and significantly lower levels of astrocytic proteins (p = 1.08 x 10-6). Unexpectedly, cumulative protein differences in rpAD plaques did not suggest accelerated typical sAD. Plaques from patients with rpAD were particularly abundant in synaptic proteins, especially those involved in synaptic vesicle release, highlighting the potential importance of synaptic dysfunction in the accelerated development of plaque pathology in rpAD. Combined, our data provide new direct evidence that amyloid plaques do not all have the same protein composition and that the proteomic differences in plaques could provide important insight into the factors that contribute to plaque development. The cumulative protein differences in rpAD plaques suggest rpAD may be a novel subtype of Alzheimer's disease.
PMCID:5503748
PMID: 28258398
ISSN: 1432-0533
CID: 2471712

Alzheimer Disease and Its Growing Epidemic: Risk Factors, Biomarkers, and the Urgent Need for Therapeutics

Hickman, Richard A; Faustin, Arline; Wisniewski, Thomas
Alzheimer disease (AD) represents one of the greatest medical challenges of this century; the condition is becoming increasingly prevalent worldwide and no effective treatments have been developed for this terminal disease. Because the disease manifests at a late stage after a long period of clinically silent neurodegeneration, knowledge of the modifiable risk factors and the implementation of biomarkers is crucial in the primary prevention of the disease and presymptomatic detection of AD, respectively. This article discusses the growing epidemic of AD and antecedent risk factors in the disease process. Disease biomarkers are discussed, and the implications that this may have for the treatment of this currently incurable disease.
PMCID:5116320
PMID: 27720002
ISSN: 1557-9875
CID: 2278142

Advancing methylation profiling in neuropathology: Diagnosis and clinical management [Meeting Abstract]

Kannan, Kasthuri S; Tsirigos, Aristotelis; Serrano, Jonathan; Forrester, Lynn Ann; Faustin, Arline; Thomas, Cheddhi; Capper, David; Hovestadt, Volker; Pfister, Stefan M; Jones, David TW; Sill, Martin; Schrimpf, Daniel; von Deimling, Andreas; Heguy, Adriana; Gardner, Sharon L; Allen, Jeffrey; Hedvat, Cyrus; Zagzag, David; Snuderl, Matija; Karajannis, Matthias A
ISI:000369082700032
ISSN: 1557-3265
CID: 2687512

Improving Molecular Diagnostics with 450K Methylation Array in Clinical Neuropathology [Meeting Abstract]

Serrano, J; Forrester, L; Kannan, K; Faustin, A; Thomas, C; Capper, D; Hovestadt, V; Pfister, S; Jones, D; Sill, M; Schrimpf, D; von Deimling, A; Heguy, A; Gardner, SL; Allen, J; Tsirigos, A; Hedvat, C
ISI:000363830000273
ISSN: 1943-7811
CID: 2688362

Anaplastic pleomorphic xanthoastrocytoma with spinal leptomeningeal spread at the time of diagnosis in an adult

Benjamin, Carolina; Faustin, Arline; Snuderl, Matija; Pacione, Donato
We describe the first patient, to our knowledge, with anaplastic pleomorphic xanthoastrocytoma (PXA) with spinal leptomeningeal spread at the time of diagnosis and present a review of the literature. PXA is a tumor that typically has an indolent course but occasionally, when anaplastic features are present, behaves in a more aggressive manner. We found that PXA with spinal leptomeningeal spread at the time of diagnosis confers a worse prognosis. Craniospinal imaging should be obtained at time of diagnosis of PXA and the presence of leptomeningeal spread may be indicative of a more aggressive disease process.
PMID: 25934112
ISSN: 1532-2653
CID: 1557472

NOVEL CANDIDATE ONCOGENIC DRIVERS IN PINEOBLASTOMA [Meeting Abstract]

Snuderl, Matija; Kannan, Kasthuri; Aminova, Olga; Dolgalev, Igor; Heguy, Adriana; Faustin, Arline; Zagzag, David; Gardner, Sharon; Allen, Jeffrey; Wisoff, Jeffrey; Capper, David; Hovestadt, Volker; Ahsan, Sama; Eberhart, Charles; Pfister, Stefan; Jones, David; Karajannis, Matthias
ISI:000361304800094
ISSN: 1523-5866
CID: 2687502