Searched for: person:feldmj06
in-biosketch:true
Enhancing the Readability of Online Patient Education Materials Using Large Language Models: Cross-Sectional Study
Will, John; Gupta, Mahin; Zaretsky, Jonah; Dowlath, Aliesha; Testa, Paul; Feldman, Jonah
BACKGROUND:Online accessible patient education materials (PEMs) are essential for patient empowerment. However, studies have shown that these materials often exceed the recommended sixth-grade reading level, making them difficult for many patients to understand. Large language models (LLMs) have the potential to simplify PEMs into more readable educational content. OBJECTIVE:We sought to evaluate whether 3 LLMs (ChatGPT [OpenAI], Gemini [Google], and Claude [Anthropic PBC]) can optimize the readability of PEMs to the recommended reading level without compromising accuracy. METHODS:This cross-sectional study used 60 randomly selected PEMs available online from 3 websites. We prompted LLMs to simplify the reading level of online PEMs. The primary outcome was the readability of the original online PEMs compared with the LLM-simplified versions. Readability scores were calculated using 4 validated indices Flesch Reading Ease, Flesch-Kincaid Grade Level, Gunning Fog Index, and Simple Measure of Gobbledygook Index. Accuracy and understandability were also assessed as balancing measures, with understandability measured using the Patient Education Materials Assessment Tool-Understandability (PEMAT-U). RESULTS:The original readability scores for the American Heart Association (AHA), American Cancer Society (ACS), and American Stroke Association (ASA) websites were above the recommended sixth-grade level, with mean grade level scores of 10.7,10.0, and 9.6, respectively. After optimization by the LLMs, readability scores significantly improved across all 3 websites when compared with the original text. Compared with the original website, Wilcoxon signed rank test showed ChatGPT improved the readability to 7.6 from 10.1 (P<.001); Gemini, to 6.6 (P<.001); and Claude, to 5.6 (P<.001). Word counts were significantly reduced by all LLMs, with a decrease from a mean range of 410.9-953.9 words to a mean range of 201.9-248.1 words. None of the ChatGPT LLM-simplified PEMs were inaccurate, while 3.3% of Gemini and Claude LLM-simplified PEMs were inaccurate. Baseline understandability scores, as measured by PEMAT-U, were preserved across all LLM-simplified versions. CONCLUSIONS:This cross-sectional study demonstrates that LLMs have the potential to significantly enhance the readability of online PEMs while maintaining accuracy and understandability, making them more accessible to a broader audience. However, variability in model performance and demonstrated inaccuracies underscore the need for human review of LLM output. Further study is needed to explore advanced LLM techniques and models trained for medical content.
PMID: 40465378
ISSN: 1438-8871
CID: 5862402
Enhancing Secure Messaging in Electronic Health Records: Evaluating the Impact of Emoji Chat Reactions on the Volume of Interruptive Notifications
Will, John; Small, William; Iturrate, Eduardo; Testa, Paul; Feldman, Jonah
ORIGINAL:0017336
ISSN: 2566-9346
CID: 5686602
Scaling Note Quality Assessment Across an Academic Medical Center with AI and GPT-4
Feldman, Jonah; Hochman, Katherine A.; Guzman, Benedict Vincent; Goodman, Adam; Weisstuch, Joseph; Testa, Paul
Electronic health records have become an integral part of modern health care, but their implementation has led to unintended consequences, such as poor note quality. This case study explores how NYU Langone Health leveraged artificial intelligence (AI) to address the challenge to improve the content and quality of medical documentation. By quickly and accurately analyzing large volumes of clinical documentation and providing feedback to organizational leadership and individually to providers, AI can help support a culture of continuous note quality improvement, allowing organizations to enhance a critical component of patient care.
SCOPUS:85194089524
ISSN: 2642-0007
CID: 5659992
Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format
Zaretsky, Jonah; Kim, Jeong Min; Baskharoun, Samuel; Zhao, Yunan; Austrian, Jonathan; Aphinyanaphongs, Yindalon; Gupta, Ravi; Blecker, Saul B; Feldman, Jonah
IMPORTANCE/UNASSIGNED:By law, patients have immediate access to discharge notes in their medical records. Technical language and abbreviations make notes difficult to read and understand for a typical patient. Large language models (LLMs [eg, GPT-4]) have the potential to transform these notes into patient-friendly language and format. OBJECTIVE/UNASSIGNED:To determine whether an LLM can transform discharge summaries into a format that is more readable and understandable. DESIGN, SETTING, AND PARTICIPANTS/UNASSIGNED:This cross-sectional study evaluated a sample of the discharge summaries of adult patients discharged from the General Internal Medicine service at NYU (New York University) Langone Health from June 1 to 30, 2023. Patients discharged as deceased were excluded. All discharge summaries were processed by the LLM between July 26 and August 5, 2023. INTERVENTIONS/UNASSIGNED:A secure Health Insurance Portability and Accountability Act-compliant platform, Microsoft Azure OpenAI, was used to transform these discharge summaries into a patient-friendly format between July 26 and August 5, 2023. MAIN OUTCOMES AND MEASURES/UNASSIGNED:Outcomes included readability as measured by Flesch-Kincaid Grade Level and understandability using Patient Education Materials Assessment Tool (PEMAT) scores. Readability and understandability of the original discharge summaries were compared with the transformed, patient-friendly discharge summaries created through the LLM. As balancing metrics, accuracy and completeness of the patient-friendly version were measured. RESULTS/UNASSIGNED:Discharge summaries of 50 patients (31 female [62.0%] and 19 male [38.0%]) were included. The median patient age was 65.5 (IQR, 59.0-77.5) years. Mean (SD) Flesch-Kincaid Grade Level was significantly lower in the patient-friendly discharge summaries (6.2 [0.5] vs 11.0 [1.5]; P < .001). PEMAT understandability scores were significantly higher for patient-friendly discharge summaries (81% vs 13%; P < .001). Two physicians reviewed each patient-friendly discharge summary for accuracy on a 6-point scale, with 54 of 100 reviews (54.0%) giving the best possible rating of 6. Summaries were rated entirely complete in 56 reviews (56.0%). Eighteen reviews noted safety concerns, mostly involving omissions, but also several inaccurate statements (termed hallucinations). CONCLUSIONS AND RELEVANCE/UNASSIGNED:The findings of this cross-sectional study of 50 discharge summaries suggest that LLMs can be used to translate discharge summaries into patient-friendly language and formats that are significantly more readable and understandable than discharge summaries as they appear in electronic health records. However, implementation will require improvements in accuracy, completeness, and safety. Given the safety concerns, initial implementation will require physician review.
PMID: 38466307
ISSN: 2574-3805
CID: 5678332
Novel Note Templates to Enhance Signal and Reduce Noise in Medical Documentation: Prospective Improvement Study
Feldman, Jonah; Goodman, Adam; Hochman, Katherine; Chakravartty, Eesha; Austrian, Jonathan; Iturrate, Eduardo; Bosworth, Brian; Saxena, Archana; Moussa, Marwa; Chenouda, Dina; Volpicelli, Frank; Adler, Nicole; Weisstuch, Joseph; Testa, Paul
Background: The introduction of electronic workflows has allowed for the flow of raw uncontextualized clinical data into medical documentation. As a result, many electronic notes have become replete of "noise" and deplete clinically significant "signals." There is an urgent need to develop and implement innovative approaches in electronic clinical documentation that improve note quality and reduce unnecessary bloating. Objective: This study aims to describe the development and impact of a novel set of templates designed to change the flow of information in medical documentation. Methods: This is a multihospital nonrandomized prospective improvement study conducted on the inpatient general internal medicine service across 3 hospital campuses at the New York University Langone Health System. A group of physician leaders representing each campus met biweekly for 6 months. The output of these meetings included (1) a conceptualization of the note bloat problem as a dysfunction in information flow, (2) a set of guiding principles for organizational documentation improvement, (3) the design and build of novel electronic templates that reduced the flow of extraneous information into provider notes by providing link outs to best practice data visualizations, and (4) a documentation improvement curriculum for inpatient medicine providers. Prior to go-live, pragmatic usability testing was performed with the new progress note template, and the overall user experience was measured using the System Usability Scale (SUS). Primary outcome measures after go-live include template utilization rate and note length in characters. Results: In usability testing among 22 medicine providers, the new progress note template averaged a usability score of 90.6 out of 100 on the SUS. A total of 77% (17/22) of providers strongly agreed that the new template was easy to use, and 64% (14/22) strongly agreed that they would like to use the template frequently. In the 3 months after template implementation, general internal medicine providers wrote 67% (51,431/76,647) of all inpatient notes with the new templates. During this period, the organization saw a 46% (2768/6191), 47% (3505/7819), and 32% (3427/11,226) reduction in note length for general medicine progress notes, consults, and history and physical notes, respectively, when compared to a baseline measurement period prior to interventions. Conclusions: A bundled intervention that included the deployment of novel templates for inpatient general medicine providers significantly reduced average note length on the clinical service. Templates designed to reduce the flow of extraneous information into provider notes performed well during usability testing, and these templates were rapidly adopted across all hospital campuses. Further research is needed to assess the impact of novel templates on note quality, provider efficiency, and patient outcomes.
SCOPUS:85154550880
ISSN: 2561-326x
CID: 5499932
Giving Your Electronic Health Record a Checkup After COVID-19: A Practical Framework for Reviewing Clinical Decision Support in Light of the Telemedicine Expansion
Feldman, Jonah; Szerencsy, Adam; Mann, Devin; Austrian, Jonathan; Kothari, Ulka; Heo, Hye; Barzideh, Sam; Hickey, Maureen; Snapp, Catherine; Aminian, Rod; Jones, Lauren; Testa, Paul
BACKGROUND:The transformation of health care during COVID-19, with the rapid expansion of telemedicine visits, presents new challenges to chronic care and preventive health providers. Clinical decision support (CDS) is critically important to chronic care providers, and CDS malfunction is common during times of change. It is essential to regularly reassess an organization's ambulatory CDS program to maintain care quality. This is especially true after an immense change, like the COVID-19 telemedicine expansion. OBJECTIVE:Our objective is to reassess the ambulatory CDS program at a large academic medical center in light of telemedicine's expansion in response to the COVID-19 pandemic. METHODS:Our clinical informatics team devised a practical framework for an intrapandemic ambulatory CDS assessment focused on the impact of the telemedicine expansion. This assessment began with a quantitative analysis comparing CDS alert performance in the context of in-person and telemedicine visits. Board-certified physician informaticists then completed a formal workflow review of alerts with inferior performance in telemedicine visits. Informaticists then reported on themes and optimization opportunities through the existing CDS governance structure. RESULTS:Our assessment revealed that 10 of our top 40 alerts by volume were not firing as expected in telemedicine visits. In 3 of the top 5 alerts, providers were significantly less likely to take action in telemedicine when compared to office visits. Cumulatively, alerts in telemedicine encounters had an action taken rate of 5.3% (3257/64,938) compared to 8.3% (19,427/233,636) for office visits. Observations from a clinical informaticist workflow review included the following: (1) Telemedicine visits have different workflows than office visits. Some alerts developed for the office were not appearing at the optimal time in the telemedicine workflow. (2) Missing clinical data is a common reason for the decreased alert firing seen in telemedicine visits. (3) Remote patient monitoring and patient-reported clinical data entered through the portal could replace data collection usually completed in the office by a medical assistant or registered nurse. CONCLUSIONS:In a large academic medical center at the pandemic epicenter, an intrapandemic ambulatory CDS assessment revealed clinically significant CDS malfunctions that highlight the importance of reassessing ambulatory CDS performance after the telemedicine expansion.
PMCID:7842852
PMID: 33400683
ISSN: 2291-9694
CID: 4767802
A SECOND LOOK AT POST-INTERVIEW COMMUNICATION [Meeting Abstract]
Feldman, Jonah; Medvedev, Eugene; Yedowitz-Freeman, Jamie; Klek, Stanislaw; Berbari, Nicholas; Hanna, Shirley; Corapi, Mark
ISI:000358386900107
ISSN: 0884-8734
CID: 3388042
The Effect of HbA1c Admission Testing Strategies on Diabetes Medication Management at Discharge [Meeting Abstract]
Saintilus, Molain; Feldman, Jonah; Mathews, Tony; Daley, Khalilah; Peragallo-Dittko, Virginia
ISI:000359482701579
ISSN: 1939-327x
CID: 2209662
Quality Improvement in Inpatient Diabetes Care Decreases Wasteful HbA1c Testing [Meeting Abstract]
Shalem, Lena; Feldman, Jonah; Rothberger, Gary; Peragallo-Dittko, Virginia; Walmsley, Sarah
ISI:000209805100212
ISSN: 0163-769x
CID: 3525822