Try a new search

Format these results:

Searched for:

person:feskes01

in-biosketch:yes

Total Results:

131


Two types of functionally distinct Ca2+ stores in hippocampal neurons

Chen-Engerer, Hsing-Jung; Hartmann, Jana; Karl, Rosa Maria; Yang, Jun; Feske, Stefan; Konnerth, Arthur
It is widely assumed that inositol trisphosphate (IP3) and ryanodine (Ry) receptors share the same Ca2+ pool in central mammalian neurons. We now demonstrate that in hippocampal CA1 pyramidal neurons IP3- and Ry-receptors are associated with two functionally distinct intracellular Ca2+ stores, respectively. While the IP3-sensitive Ca2+ store refilling requires Orai2 channels, Ry-sensitive Ca2+ store refilling involves voltage-gated Ca2+ channels (VGCCs). Our findings have direct implications for the understanding of function and plasticity in these central mammalian neurons.
PMCID:6642203
PMID: 31324793
ISSN: 2041-1723
CID: 3986462

Calcium Signaling Controls Pathogenic Th17 Cell-Mediated Inflammation by Regulating Mitochondrial Function

Kaufmann, Ulrike; Kahlfuss, Sascha; Yang, Jun; Ivanova, Elitza; Koralov, Sergei B; Feske, Stefan
Pathogenic Th17 cells play important roles in many autoimmune and inflammatory diseases. Their function depends on T cell receptor (TCR) signaling and cytokines that activate signal transducer and activator of transcription 3 (STAT3). TCR engagement activates stromal interaction molecule 1 (STIM1) and calcium (Ca2+) influx through Ca2+-release-activated Ca2+ (CRAC) channels. Here, we show that abolishing STIM1 and Ca2+ influx in T cells expressing a hyperactive form of STAT3 (STAT3C) attenuates pathogenic Th17 cell function and inflammation associated with STAT3C expression. Deletion of STIM1 in pathogenic Th17 cells reduces the expression of genes required for mitochondrial function and oxidative phosphorylation (OXPHOS) but enhances reactive oxygen species (ROS) production. STIM1 deletion or inhibition of OXPHOS is associated with a non-pathogenic Th17 gene expression signature and impaired pathogenic Th17 cell function. Our findings establish Ca2+ influx as a critical regulator of mitochondrial function and oxidative stress in pathogenic Th17 cell-mediated multiorgan inflammation.
PMID: 30773462
ISSN: 1932-7420
CID: 3685672

Differential regulation of Ca2+ influx by ORAI channels mediates enamel mineralization

Eckstein, Miriam; Vaeth, Martin; Aulestia, Francisco J; Costiniti, Veronica; Kassam, Serena N; Bromage, Timothy G; Pedersen, Pal; Issekutz, Thomas; Idaghdour, Youssef; Moursi, Amr M; Feske, Stefan; Lacruz, Rodrigo S
Store-operated Ca2+ entry (SOCE) channels are highly selective Ca2+ channels activated by the endoplasmic reticulum (ER) sensors STIM1 and STIM2. Their direct interaction with the pore-forming plasma membrane ORAI proteins (ORAI1, ORAI2, and ORAI3) leads to sustained Ca2+ fluxes that are critical for many cellular functions. Mutations in the human ORAI1 gene result in immunodeficiency, anhidrotic ectodermal dysplasia, and enamel defects. In our investigation of the role of ORAI proteins in enamel, we identified enamel defects in a patient with an ORAI1 null mutation. Targeted deletion of the Orai1 gene in mice showed enamel defects and reduced SOCE in isolated enamel cells. However, Orai2-/- mice showed normal enamel despite having increased SOCE in the enamel cells. Knockdown experiments in the enamel cell line LS8 suggested that ORAI2 and ORAI3 modulated ORAI1 function, with ORAI1 and ORAI2 being the main contributors to SOCE. ORAI1-deficient LS8 cells showed altered mitochondrial respiration with increased oxygen consumption rate and ATP, which was associated with altered redox status and enhanced ER Ca2+ uptake, likely due to S-glutathionylation of SERCA pumps. Our findings demonstrate an important role of ORAI1 in Ca2+ influx in enamel cells and establish a link between SOCE, mitochondrial function, and redox homeostasis.
PMID: 31015290
ISSN: 1937-9145
CID: 3821202

Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels

Vaeth, Martin; Wang, Yin-Hu; Eckstein, Miriam; Yang, Jun; Silverman, Gregg J; Lacruz, Rodrigo S; Kannan, Kasthuri; Feske, Stefan
T regulatory (Treg) cells maintain immunological tolerance and organ homeostasis. Activated Treg cells differentiate into effector Treg subsets that acquire tissue-specific functions. Ca2+ influx via Ca2+ release-activated Ca2+ (CRAC) channels formed by STIM and ORAI proteins is required for the thymic development of Treg cells, but its function in mature Treg cells remains unclear. Here we show that deletion of Stim1 and Stim2 genes in mature Treg cells abolishes Ca2+ signaling and prevents their differentiation into follicular Treg and tissue-resident Treg cells. Transcriptional profiling of STIM1/STIM2-deficient Treg cells reveals that Ca2+ signaling regulates transcription factors and signaling pathways that control the identity and effector differentiation of Treg cells. In the absence of STIM1/STIM2 in Treg cells, mice develop a broad spectrum of autoantibodies and fatal multiorgan inflammation. Our findings establish a critical role of CRAC channels in controlling lineage identity and effector functions of Treg cells.
PMID: 30862784
ISSN: 2041-1723
CID: 3732832

Eye on ion channels in immune cells

Feske, Stefan; Concepcion, Axel R; Coetzee, William A
Ion channels facilitate the movement of ions across the plasma and organellar membranes. A recent symposium brought together scientists who study ion channels and transporters in immune cells, which highlighted advances in this emerging field and served to chart new avenues for investigating the roles of ion channels in immunity.
PMID: 30862701
ISSN: 1937-9145
CID: 3733122

CRAC channels and disease - From human CRAC channelopathies and animal models to novel drugs

Feske, Stefan
Ca2+ release-activated Ca2+ (CRAC) channels are intimately linked with health and disease. The gene encoding the CRAC channel, ORAI1, was discovered in part by genetic analysis of patients with abolished CRAC channel function. And patients with autosomal recessive loss-of-function (LOF) mutations in ORAI1 and its activator stromal interaction molecule 1 (STIM1) that abolish CRAC channel function and store-operated Ca2+ entry (SOCE) define essential functions of CRAC channels in health and disease. Conversely, gain-of-function (GOF) mutations in ORAI1 and STIM1 are associated with tubular aggregate myopathy (TAM) and Stormorken syndrome due to constitutive CRAC channel activation. In addition, genetically engineered animal models of ORAI and STIM function have provided important insights into the physiological and pathophysiological roles of CRAC channels in cell types and organs beyond those affected in human patients. The picture emerging from this body of work shows CRAC channels as important regulators of cell function in many tissues, and as potential drug targets for the treatment of autoimmune and inflammatory disorders.
PMID: 31009822
ISSN: 1532-1991
CID: 3821362

Store-operated (SOCE) and receptor-operated Ca2+ entry (ROCE) in STIM1/2-and TRPC1/6-deficient primary murine lung fibroblasts [Meeting Abstract]

Bendiks, L.; Gudermann, T.; Feske, S.; Dietrich, A.
ISI:000458266900112
ISSN: 0028-1298
CID: 3660002

Skin Associated Staphylococcus Aureus Contributes to Disease Progression in CTCL [Meeting Abstract]

Tegla, Cosmin A.; Herrera, Alberto M.; Seffens, Angelina M.; Fanok, Melania H.; Dean, George; Kawaoka, John; Laird, Mary E.; Fulmer, Yi; Willerslev-Olsen, Andreas; Hymes, Kenneth B.; Latkowski, Jo-Ann; Odum, Niels; Feske, Stefan; Shopsin, Bo; Torres, Victor; Kadin, Marshall E.; Geskin, Larisa J.; Koralov, Sergei B.
ISI:000518218500534
ISSN: 0006-4971
CID: 4505432

ORAI1, STIM1/2, and RYR1 shape subsecond Ca2+ microdomains upon T cell activation

Diercks, Björn-Philipp; Werner, René; Weidemüller, Paula; Czarniak, Frederik; Hernandez, Lola; Lehmann, Cari; Rosche, Annette; Krüger, Aileen; Kaufmann, Ulrike; Vaeth, Martin; Failla, Antonio V; Zobiak, Bernd; Kandil, Farid I; Schetelig, Daniel; Ruthenbeck, Alexandra; Meier, Chris; Lodygin, Dmitri; Flügel, Alexander; Ren, Dejian; Wolf, Insa M A; Feske, Stefan; Guse, Andreas H
The earliest intracellular signals that occur after T cell activation are local, subsecond Ca2+ microdomains. Here, we identified a Ca2+ entry component involved in Ca2+ microdomain formation in both unstimulated and stimulated T cells. In unstimulated T cells, spontaneously generated small Ca2+ microdomains required ORAI1, STIM1, and STIM2. Super-resolution microscopy of unstimulated T cells identified a circular subplasmalemmal region with a diameter of about 300 nm with preformed patches of colocalized ORAI1, ryanodine receptors (RYRs), and STIM1. Preformed complexes of STIM1 and ORAI1 in unstimulated cells were confirmed by coimmunoprecipitation and Förster resonance energy transfer studies. Furthermore, within the first second after T cell receptor (TCR) stimulation, the number of Ca2+ microdomains increased in the subplasmalemmal space, an effect that required ORAI1, STIM2, RYR1, and the Ca2+ mobilizing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate). These results indicate that preformed clusters of STIM and ORAI1 enable local Ca2+ entry events in unstimulated cells. Upon TCR activation, NAADP-evoked Ca2+ release through RYR1, in coordination with Ca2+ entry through ORAI1 and STIM, rapidly increases the number of Ca2+ microdomains, thereby initiating spread of Ca2+ signals deeper into the cytoplasm to promote full T cell activation.
PMID: 30563862
ISSN: 1937-9145
CID: 3556552

ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID)

Lian, Jayson; Cuk, Mario; Kahlfuss, Sascha; Kozhaya, Lina; Vaeth, Martin; Rieux-Laucat, Frederic; Picard, Capucine; Benson, Melina J; Jakovcevic, Antonia; Bilic, Karmen; Martinac, Iva; Stathopulos, Peter; Kacskovics, Imre; Vraetz, Thomas; Speckmann, Carsten; Ehl, Stephan; Issekutz, Thomas; Unutmaz, Derya; Feske, Stefan
BACKGROUND: Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels is an essential signaling pathway in many cell types. CRAC channels are formed by ORAI1, ORAI2 and ORAI3 proteins and activated by stromal interaction molecule 1 (STIM1) and STIM2. Mutations in ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and non-immunological symptoms. OBJECTIVE: Molecular and immunological analysis of patients with CID, anhidrosis and ectodermal dysplasia of unknown etiology. METHODS: DNA sequencing of ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, measurements of SOCE, immunological analysis of peripheral blood lymphocyte populations by flow cytometry, histological and ultrastructural analysis of patient tissues. RESULTS: We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis (EDA) and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. Besides impaired T cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer (iNKT) and regulatory T (Treg) cells, and altered composition of gammadelta T cell and NK cell subsets. CONCLUSION: ORAI1 null mutations are associated with reduced numbers of iNKT and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1 deficient patients suffer from dental enamel defects and anhidrosis representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) that is distinct from previously reported patients with EDA-ID due to mutations in the NF-kB signaling pathway (IKBKG and NFKBIA).
PMCID:5955830
PMID: 29155098
ISSN: 1097-6825
CID: 2792112