Try a new search

Format these results:

Searched for:



Total Results:


BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer's disease and other disorders of lipid-rich tissues

Podleśny-Drabiniok, Anna; Novikova, Gloriia; Liu, Yiyuan; Dunst, Josefine; Temizer, Rose; Giannarelli, Chiara; Marro, Samuele; Kreslavsky, Taras; Marcora, Edoardo; Goate, Alison Mary
Genetic and experimental evidence suggests that Alzheimer's disease (AD) risk alleles and genes may influence disease susceptibility by altering the transcriptional and cellular responses of macrophages, including microglia, to damage of lipid-rich tissues like the brain. Recently, sc/nRNA sequencing studies identified similar transcriptional activation states in subpopulations of macrophages in aging and degenerating brains and in other diseased lipid-rich tissues. We collectively refer to these subpopulations of microglia and peripheral macrophages as DLAMs. Using macrophage sc/nRNA-seq data from healthy and diseased human and mouse lipid-rich tissues, we reconstructed gene regulatory networks and identified 11 strong candidate transcriptional regulators of the DLAM response across species. Loss or reduction of two of these transcription factors, BHLHE40/41, in iPSC-derived microglia and human THP-1 macrophages as well as loss of Bhlhe40/41 in mouse microglia, resulted in increased expression of DLAM genes involved in cholesterol clearance and lysosomal processing, increased cholesterol efflux and storage, and increased lysosomal mass and degradative capacity. These findings provide targets for therapeutic modulation of macrophage/microglial function in AD and other disorders affecting lipid-rich tissues.
PMID: 38448474
ISSN: 2041-1723
CID: 5645642

SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels

Eberhardt, Natalia; Noval, Maria Gabriela; Kaur, Ravneet; Amadori, Letizia; Gildea, Michael; Sajja, Swathy; Das, Dayasagar; Cilhoroz, Burak; Stewart, O'Jay; Fernandez, Dawn M; Shamailova, Roza; Guillen, Andrea Vasquez; Jangra, Sonia; Schotsaert, Michael; Newman, Jonathan D; Faries, Peter; Maldonado, Thomas; Rockman, Caron; Rapkiewicz, Amy; Stapleford, Kenneth A; Narula, Navneet; Moore, Kathryn J; Giannarelli, Chiara
Patients with coronavirus disease 2019 (COVID-19) present increased risk for ischemic cardiovascular complications up to 1 year after infection. Although the systemic inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques remains unknown. Here we report that SARS-CoV-2 viral RNA is detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and human atherosclerotic vascular explants with secretion of cytokines known to trigger cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing plaque inflammation that could trigger acute cardiovascular complications and increase the long-term cardiovascular risk.
PMID: 38076343
ISSN: 2731-0590
CID: 5589542

Single-Point Vulnerabilities in Atherosclerotic Plaque [Comment]

Giannarelli, Chiara
PMID: 37286251
ISSN: 1558-3597
CID: 5509662

Systems immunology-based drug repurposing framework to target inflammation in atherosclerosis

Amadori, Letizia; Calcagno, Claudia; Fernandez, Dawn M.; Koplev, Simon; Fernandez, Nicolas; Kaur, Ravneet; Mury, Pauline; Khan, Nayaab S.; Sajja, Swathy; Shamailova, Roza; Cyr, Yannick; Jeon, Minji; Hill, Christopher A.; Chong, Peik Sean; Naidu, Sonum; Sakurai, Ken; Ghotbi, Adam Ali; Soler, Raphael; Eberhardt, Natalia; Rahman, Adeeb; Faries, Peter; Moore, Kathryn J.; Fayad, Zahi A.; Ma"™ayan, Avi; Giannarelli, Chiara
The development of new immunotherapies to treat the inflammatory mechanisms that sustain atherosclerotic cardiovascular disease (ASCVD) is urgently needed. Herein, we present a path to drug repurposing to identify immunotherapies for ASCVD. The integration of time-of-flight mass cytometry and RNA sequencing identified unique inflammatory signatures in peripheral blood mononuclear cells stimulated with ASCVD plasma. By comparing these inflammatory signatures to large-scale gene expression data from the LINCS L1000 dataset, we identified drugs that could reverse this inflammatory response. Ex vivo screens, using human samples, showed that saracatinib"”a phase 2a-ready SRC and ABL inhibitor"”reversed the inflammatory responses induced by ASCVD plasma. In Apoe −/− mice, saracatinib reduced atherosclerosis progression by reprogramming reparative macrophages. In a rabbit model of advanced atherosclerosis, saracatinib reduced plaque inflammation measured by [18F]fluorodeoxyglucose positron emission tomography"“magnetic resonance imaging. Here we show a systems immunology-driven drug repurposing with a preclinical validation strategy to aid the development of cardiovascular immunotherapies.
ISSN: 2731-0590
CID: 5548792

Abstract 441: Relationship Between Diabetes, Glucose Control, And Vascular Health: Findings From The American Heart Association Cardiometabolic Health Strategically Focused Research Network [Meeting Abstract]

Garshick, Michael; Barrett, Tessa A; Jindal, Manila; Newman, Jonathan D; Fadzan, Maja; Bredefeld, Cindy; Levy, Natalie; Akinlonu, Adedoyin; Heguy, Adriana; Drenkova, Schlamp, Florencia; Giannarelli, Chiara; Fisher, Edward A; Goldberg, Ira J; Berger, Jeffrey
ISSN: 1524-4636
CID: 5578852

Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling

Canfrán-Duque, Alberto; Rotllan, Noemi; Zhang, Xinbo; Andrés-Blasco, Irene; Thompson, Bonne M; Sun, Jonathan; Price, Nathan L; Fernández-Fuertes, Marta; Fowler, Joseph W; Gómez-Coronado, Diego; Sessa, William C; Giannarelli, Chiara; Schneider, Robert J; Tellides, George; McDonald, Jeffrey G; Fernández-Hernando, Carlos; Suárez, Yajaira
BACKGROUND:Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: RESULTS:We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS:Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.
PMID: 36416142
ISSN: 1524-4539
CID: 5384202

Editorial: Immune and autoimmune mechanisms in cardiovascular disease

Winkels, Holger; Gerdes, Norbert; Kahles, Florian; Dutta, Partha; Giannarelli, Chiara; Wolf, Dennis
ISSN: 2297-055x
CID: 5424012

Publisher Correction: Systems immunology-based drug repurposing framework to target inflammation in atherosclerosis (Nature Cardiovascular Research, (2023), 2, 6, (550-571), 10.1038/s44161-023-00278-y)

Amadori, Letizia; Calcagno, Claudia; Fernandez, Dawn M.; Koplev, Simon; Fernandez, Nicolas; Kaur, Ravneet; Mury, Pauline; Khan, Nayaab S.; Sajja, Swathy; Shamailova, Roza; Cyr, Yannick; Jeon, Minji; Hill, Christopher A.; Chong, Peik Sean; Naidu, Sonum; Sakurai, Ken; Ghotbi, Adam Ali; Soler, Raphael; Eberhardt, Natalia; Rahman, Adeeb; Faries, Peter; Moore, Kathryn J.; Fayad, Zahi A.; Ma"™ayan, Avi; Giannarelli, Chiara
Correction to: Nature Cardiovascular Research. Published online 8 June 2023. In the version of this article initially published, a protein (pMAPKAPK2) was misspelled in Fig. 1 and Extended Data Fig. 7; a colored box for "AKT" was missing from the second column of regulators in Fig. 5a; Extended Data Fig. 2f was missing a header above the color key; and typographical errors (extraneous citations to refs. 1, 3 and 5) were present in the "Analysis of RNA-seq data from saracatinib-treated tissue" section of Methods. In addition, the Reporting Summary and the legends for Supplementary Figs. 5 and 8 were outdated versions. The errors have been corrected in the HTML and PDF versions of the article.
ISSN: 2731-0590
CID: 5549612

Loss of PRMT2 in myeloid cells in normoglycemic mice phenocopies impaired regression of atherosclerosis in diabetic mice

Vurusaner, Beyza; Thevkar-Nages, Prashanth; Kaur, Ravneet; Giannarelli, Chiara; Garabedian, Michael J; Fisher, Edward A
The regression, or resolution, of inflammation in atherosclerotic plaques is impaired in diabetes. However, the factors mediating this effect remain incomplete. We identified protein arginine methyltransferase 2 (PRMT2) as a protein whose expression in macrophages is reduced in hyperglycemia and diabetes. PRMT2 catalyzes arginine methylation to target proteins to modulate gene expression. Because PRMT2 expression is reduced in cells in hyperglycemia, we wanted to determine whether PRMT2 plays a causal role in the impairment of atherosclerosis regression in diabetes. We, therefore, examined the consequence of deleting PRMT2 in myeloid cells during the regression of atherosclerosis in normal and diabetic mice. Remarkably, we found significant impairment of atherosclerosis regression under normoglycemic conditions in mice lacking PRMT2 (Prmt2-/-) in myeloid cells that mimic the decrease in regression of atherosclerosis in WT mice under diabetic conditions. This was associated with increased plaque macrophage retention, as well as increased apoptosis and necrosis. PRMT2-deficient plaque CD68+ cells under normoglycemic conditions showed increased expression of genes involved in cytokine signaling and inflammation compared to WT cells. Consistently, Prmt2-/- bone marrow-derived macrophages (BMDMs) showed an increased response of proinflammatory genes to LPS and a decreased response of inflammation resolving genes to IL-4. This increased response to LPS in Prmt2-/- BMDMs occurs via enhanced NF-kappa B activity. Thus, the loss of PRMT2 is causally linked to impaired atherosclerosis regression via a heightened inflammatory response in macrophages. That PRMT2 expression was lower in myeloid cells in plaques from human subjects with diabetes supports the relevance of our findings to human atherosclerosis.
PMID: 35835907
ISSN: 2045-2322
CID: 5278482

Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation

Toner, Yohana C; Ghotbi, Adam A; Naidu, Sonum; Sakurai, Ken; van Leent, Mandy M T; Jordan, Stefan; Ordikhani, Farideh; Amadori, Letizia; Sofias, Alexandros Marios; Fisher, Elizabeth L; Maier, Alexander; Sullivan, Nathaniel; Munitz, Jazz; Senders, Max L; Mason, Christian; Reiner, Thomas; Soultanidis, Georgios; Tarkin, Jason M; Rudd, James H F; Giannarelli, Chiara; Ochando, Jordi; Pérez-Medina, Carlos; Kjaer, Andreas; Mulder, Willem J M; Fayad, Zahi A; Calcagno, Claudia
In recent years, cardiovascular immuno-imaging by positron emission tomography (PET) has undergone tremendous progress in preclinical settings. Clinically, two approved PET tracers hold great potential for inflammation imaging in cardiovascular patients, namely FDG and DOTATATE. While the former is a widely applied metabolic tracer, DOTATATE is a relatively new PET tracer targeting the somatostatin receptor 2 (SST2). In the current study, we performed a detailed, head-to-head comparison of DOTATATE-based radiotracers and [18F]F-FDG in mouse and rabbit models of cardiovascular inflammation. For mouse experiments, we labeled DOTATATE with the long-lived isotope [64Cu]Cu to enable studying the tracer's mode of action by complementing in vivo PET/CT experiments with thorough ex vivo immunological analyses. For translational PET/MRI rabbit studies, we employed the more widely clinically used [68Ga]Ga-labeled DOTATATE, which was approved by the FDA in 2016. DOTATATE's pharmacokinetics and timed biodistribution were determined in control and atherosclerotic mice and rabbits by ex vivo gamma counting of blood and organs. Additionally, we performed in vivo PET/CT experiments in mice with atherosclerosis, mice subjected to myocardial infarction and control animals, using both [64Cu]Cu-DOTATATE and [18F]F-FDG. To evaluate differences in the tracers' cellular specificity, we performed ensuing ex vivo flow cytometry and gamma counting. In mice subjected to myocardial infarction, in vivo [64Cu]Cu-DOTATATE PET showed higher differential uptake between infarcted (SUVmax 1.3, IQR, 1.2-1.4, N = 4) and remote myocardium (SUVmax 0.7, IQR, 0.5-0.8, N = 4, p = 0.0286), and with respect to controls (SUVmax 0.6, IQR, 0.5-0.7, N = 4, p = 0.0286), than [18F]F-FDG PET. In atherosclerotic mice, [64Cu]Cu-DOTATATE PET aortic signal, but not [18F]F-FDG PET, was higher compared to controls (SUVmax 1.1, IQR, 0.9-1.3 and 0.5, IQR, 0.5-0.6, respectively, N = 4, p = 0.0286). In both models, [64Cu]Cu-DOTATATE demonstrated preferential accumulation in macrophages with respect to other myeloid cells, while [18F]F-FDG was taken up by macrophages and other leukocytes. In a translational PET/MRI study in atherosclerotic rabbits, we then compared [68Ga]Ga-DOTATATE and [18F]F-FDG for the assessment of aortic inflammation, combined with ex vivo radiometric assays and near-infrared imaging of macrophage burden. Rabbit experiments showed significantly higher aortic accumulation of both [68Ga]Ga-DOTATATE and [18F]F-FDG in atherosclerotic (SUVmax 0.415, IQR, 0.338-0.499, N = 32 and 0.446, IQR, 0.387-0.536, N = 27, respectively) compared to control animals (SUVmax 0.253, IQR, 0.197-0.285, p = 0.0002, N = 10 and 0.349, IQR, 0.299-0.423, p = 0.0159, N = 11, respectively). In conclusion, we present a detailed, head-to-head comparison of the novel SST2-specific tracer DOTATATE and the validated metabolic tracer [18F]F-FDG for the evaluation of inflammation in small animal models of cardiovascular disease. Our results support further investigations on the use of DOTATATE to assess cardiovascular inflammation as a complementary readout to the widely used [18F]F-FDG.
PMID: 35418569
ISSN: 2045-2322
CID: 5202012