Try a new search

Format these results:

Searched for:

person:goldbi05

in-biosketch:true

Total Results:

297


Angiopoietin-like 3: An important protein in regulating lipoprotein levels

Burks, Kendall H; Basu, Debapriya; Goldberg, Ira J; Stitziel, Nathan O
ANGPTL3 has emerged as a therapeutic target whose inhibition results in profound reductions of plasma lipids, including atherogenic triglyceride-rich lipoproteins and low-density lipoprotein cholesterol. The identification of ANGPTL3 deficiency as a cause of familial combined hypolipidemia in humans hastened the development of anti-ANGPTL3 therapeutic agents, including evinacumab (a monoclonal antibody inhibiting circulating ANGPTL3), vupanorsen (an antisense oligonucleotide [ASO] targeting hepatic ANGPTL3 mRNA for degradation), and others. Advances have also been made in ANGPTL3 vaccination and gene editing strategies, with the former still in preclinical phases and the latter in preparation for Phase 1 trials. Here, we review the discovery of ANGPTL3 as an important regulator of lipoprotein metabolism, molecular characteristics of the protein, mechanisms by which it regulates plasma lipids, and the clinical development of anti-ANGPTL3 agents. The clinical success of therapies inhibiting ANGPTL3 highlights the importance of this target as a novel approach in treating refractory hypertriglyceridemia and hypercholesterolemia.
PMID: 35999139
ISSN: 1878-1594
CID: 5338242

Loss of myeloid lipoprotein lipase exacerbates adipose tissue fibrosis with collagen VI deposition and hyperlipidemia in leptin-deficient obese mice

Takahashi, Manabu; Yamamuro, Daisuke; Wakabayashi, Tetsuji; Takei, Akihito; Takei, Shoko; Nagashima, Shuichi; Okazaki, Hiroaki; Ebihara, Ken; Yagyu, Hiroaki; Takayanagi, Yuki; Onaka, Tatsushi; Goldberg, Ira J; Ishibashi, Shun
During obesity, tissue macrophages increase in number and become pro-inflammatory, thereby contributing to metabolic dysfunction. Lipoprotein lipase (LPL), which hydrolyzes triglyceride (TG) in lipoproteins, is secreted by macrophages. However, the role of macrophage-derived LPL in adipose tissue remodeling and lipoprotein metabolism is largely unknown. To clarify these issues, we crossed leptin-deficient Lepob/ob mice with mice lacking the Lpl gene in myeloid cells (Lplm-/m-) to generate Lplm-/m-;Lepob/ob mice. We found the weight of perigonadal white adipose tissue (WAT) was increased in Lplm-/m-;Lepob/ob mice compared with Lepob/ob mice due to substantial accumulation of both adipose tissue macrophages (ATMs) and collagen that surrounded necrotic adipocytes. In the fibrotic epidydimal WAT of Lplm-/m-;Lepob/ob mice, we observed an increase in collagen VI and high mobility group box 1 (HMGB1), while α-smooth muscle cell actin, a marker of myofibroblasts, was almost undetectable, suggesting that the adipocytes were the major source of the collagens. Furthermore the ATMs from Lplm-/m-;Lepob/ob mice showed increased expression of genes related to fibrosis and inflammation. In addition, we determined Lplm-/m-;Lepob/ob mice were more hypertriglyceridemic than Lepob/ob mice. Lplm-/m-;Lepob/ob mice also showed slower weight gain than Lepob/ob mice, which was primarily due to reduced food intake. In conclusion, we discovered that the loss of myeloid Lpl led to extensive fibrosis of perigonadal WAT and hypertriglyceridemia. In addition to illustrating an important role of macrophage LPL in regulation of circulating TG levels, these data show that macrophage LPL protects against fibrosis in obese adipose tissues.
PMID: 35926714
ISSN: 1083-351x
CID: 5288252

Continuous glucose monitoring and 1-h plasma glucose identifies glycemic variability and dysglycemia in high-risk individuals with HbA1c < 5.7%: a pilot study

Dorcely, Brenda; Sifonte, Eliud; Popp, Collin; Divakaran, Anjana; Katz, Karin; Musleh, Sarah; Jagannathan, Ram; Curran, Margaret; Sevick, Mary Ann; Aleman, José O; Goldberg, Ira J; Bergman, Michael
PMID: 35729471
ISSN: 1559-0100
CID: 5265672

Management of dyslipidemia and atherosclerotic cardiovascular risk in prediabetes

Neves, João Sérgio; Newman, Connie; Bostrom, John A; Buysschaert, Martin; Newman, Jonathan D; Medina, José Luiz; Goldberg, Ira J; Bergman, Michael
Prediabetes affects at least 1 in 3 adults in the U.S. and 1 in 5 in Europe. Although guidelines advocate aggressive management of lipid parameters in diabetes, most guidelines do not address treatment of dyslipidemia in prediabetes despite the increased atherosclerotic cardiovascular disease (ASCVD) risk. Several criteria are used to diagnose prediabetes: impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and HbA1c of 5.7-6.4%. Individuals with prediabetes have a greater risk of diabetes, a higher prevalence of dyslipidemia with a more atherogenic lipid profile and an increased risk of ASCVD. In addition to calculating ASCVD risk using traditional methods, an OGTT may further stratify risk. Those with 1-hour plasma glucose ≥8.6 mmol/L (155 mg/dL) and/or 2-hour ≥7.8 mmol/L (140 mg/dL) (IGT) have a greater risk of ASCVD. Diet and lifestyle modification are fundamental in prediabetes. Statins, ezetimibe and PCSK9 inhibitors are recommended in people requiring pharmacotherapy. Although high-intensity statins may increase risk of diabetes, this is acceptable because of the greater reduction of ASCVD. The LDL-C goal in prediabetes should be individualized. In those with IGT and/or elevated 1-hour plasma glucose, the same intensive approach to dyslipidemia as recommended for diabetes should be considered, particularly if other ASCVD risk factors are present.
PMID: 35787415
ISSN: 1872-8227
CID: 5280182

LRP1 loss in airway epithelium exacerbates smoke-induced oxidative damage and airway remodeling

Garcia-Arcos, Itsaso; Park, Sangmi S; Mai, Michelle; Alvarez-Buve, Roger; Chow, Lillian; Cai, Huchong; Baumlin-Schmid, Nathalie; Agudelo, Christina W; Martinez, Jennifer; Kim, Michael D; Dabo, Abdoulaye J; Salathe, Matthias; Goldberg, Ira J; Foronjy, Robert F
The LDL receptor related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD) and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased TGFβ activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and FEV0.05/FVC than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification, as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.
PMID: 35202607
ISSN: 1539-7262
CID: 5172332

Addressing dyslipidemic risk beyond LDL-cholesterol

Tall, Alan R; Thomas, David G; Gonzalez-Cabodevilla, Ainara G; Goldberg, Ira J
Despite the success of LDL-lowering drugs in reducing cardiovascular disease (CVD), there remains a large burden of residual disease due in part to persistent dyslipidemia characterized by elevated levels of triglyceride-rich lipoproteins (TRLs) and reduced levels of HDL. This form of dyslipidemia is increasing globally as a result of the rising prevalence of obesity and metabolic syndrome. Accumulating evidence suggests that impaired hepatic clearance of cholesterol-rich TRL remnants leads to their accumulation in arteries, promoting foam cell formation and inflammation. Low levels of HDL may associate with reduced cholesterol efflux from foam cells, aggravating atherosclerosis. While fibrates and fish oils reduce TRL, they have not been uniformly successful in reducing CVD, and there is a large unmet need for new approaches to reduce remnants and CVD. Rare genetic variants that lower triglyceride levels via activation of lipolysis and associate with reduced CVD suggest new approaches to treating dyslipidemia. Apolipoprotein C3 (APOC3) and angiopoietin-like 3 (ANGPTL3) have emerged as targets for inhibition by antibody, antisense, or RNAi approaches. Inhibition of either molecule lowers TRL but respectively raises or lowers HDL levels. Large clinical trials of such agents in patients with high CVD risk and elevated levels of TRL will be required to demonstrate efficacy of these approaches.
PMCID:8718149
PMID: 34981790
ISSN: 1558-8238
CID: 5106982

Cardiac immune cell infiltration associates with abnormal lipid metabolism

Cifarelli, Vincenza; Kuda, Ondrej; Yang, Kui; Liu, Xinping; Gross, Richard W; Pietka, Terri A; Heo, Gyu Seong; Sultan, Deborah; Luehmann, Hannah; Lesser, Josie; Ross, Morgan; Goldberg, Ira J; Gropler, Robert J; Liu, Yongjian; Abumrad, Nada A
CD36 mediates the uptake of long-chain fatty acids (FAs), a major energy substrate for the myocardium. Under excessive FA supply, CD36 can cause cardiac lipid accumulation and inflammation while its deletion reduces heart FA uptake and lipid content and increases glucose utilization. As a result, CD36 was proposed as a therapeutic target for obesity-associated heart disease. However, more recent reports have shown that CD36 deficiency suppresses myocardial flexibility in fuel preference between glucose and FAs, impairing tissue energy balance, while CD36 absence in tissue macrophages reduces efferocytosis and myocardial repair after injury. In line with the latter homeostatic functions, we had previously reported that CD36-/- mice have chronic subclinical inflammation. Lipids are important for the maintenance of tissue homeostasis and there is limited information on heart lipid metabolism in CD36 deficiency. Here, we document in the hearts of unchallenged CD36-/- mice abnormalities in the metabolism of triglycerides, plasmalogens, cardiolipins, acylcarnitines, and arachidonic acid, and the altered remodeling of these lipids in response to an overnight fast. The hearts were examined for evidence of inflammation by monitoring the presence of neutrophils and pro-inflammatory monocytes/macrophages using the respective positron emission tomography (PET) tracers, 64Cu-AMD3100 and 68Ga-DOTA-ECL1i. We detected significant immune cell infiltration in unchallenged CD36-/- hearts as compared with controls and immune infiltration was also observed in hearts of mice with cardiomyocyte-specific CD36 deficiency. Together, the data show that the CD36-/- heart is in a non-homeostatic state that could compromise its stress response. Non-invasive immune cell monitoring in humans with partial or total CD36 deficiency could help evaluate the risk of impaired heart remodeling and disease.
PMCID:9428462
PMID: 36061565
ISSN: 2297-055x
CID: 5336902

Guidance for the diagnosis and treatment of hypolipidemia disorders

Bredefeld, Cindy; Hussain, M Mahmood; Averna, Maurizio; Black, Dennis D; Brin, Mitchell F; Burnett, John R; Charrière, Sybil; Cuerq, Charlotte; Davidson, Nicholas O; Deckelbaum, Richard J; Goldberg, Ira J; Granot, Esther; Hegele, Robert A; Ishibashi, Shun; Karmally, Wahida; Levy, Emile; Moulin, Philippe; Okazaki, Hiroaki; Poinsot, Pierre; Rader, Daniel J; Takahashi, Manabu; Tarugi, Patrizia; Traber, Maret G; Di Filippo, Mathilde; Peretti, Noel
The Abetalipoproteinemia and Related Disorders Foundation was established in 2019 to provide guidance and support for the life-long management of inherited hypocholesterolemia disorders. Our mission is "to improve the lives of individuals and families affected by abetalipoproteinemia and related disorders". This review explains the molecular mechanisms behind the monogenic hypobetalipoproteinemia disorders and details their specific pathophysiology, clinical presentation and management throughout the lifespan. In this review, we focus on abetalipoproteinemia, homozygous hypobetalipoproteinemia and chylomicron retention disease; rare genetic conditions that manifest early in life and cause severe complications without appropriate treatment. Absent to low plasma lipid levels, in particular cholesterol and triglyceride, along with malabsorption of fat and fat-soluble vitamins are characteristic features of these diseases. We summarize the genetic basis of these disorders, provide guidance in their diagnosis and suggest treatment regimens including high dose fat-soluble vitamins as therapeutics. A section on preconception counseling and other special considerations pertaining to pregnancy is included. This information may be useful for patients, caregivers, physicians and insurance agencies involved in the management and support of affected individuals.
PMID: 36243606
ISSN: 1933-2874
CID: 5361332

CREBH normalizes dyslipidemia and halts atherosclerosis in diabetes by decreasing circulating remnant lipoproteins

Shimizu-Albergine, Masami; Basu, Debapriya; Kanter, Jenny E; Kramer, Farah; Kothari, Vishal; Barnhart, Shelley; Thornock, Carissa; Mullick, Adam E; Clouet-Foraison, Noemie; Vaisar, Tomas; Heinecke, Jay W; Hegele, Robert A; Goldberg, Ira J; Bornfeldt, Karin E
Loss-of-function mutations in the transcription factor CREB3L3 (CREBH) associate with severe hypertriglyceridemia in humans. CREBH is believed to lower plasma triglycerides by augmenting the activity of lipoprotein lipase (LPL). However, by using a mouse model of type 1 diabetes mellitus (T1DM), we found that greater liver expression of active CREBH normalized both elevated plasma triglycerides and cholesterol. Residual triglyceride-rich lipoprotein (TRL) remnants were enriched in apolipoprotein E (APOE) and impoverished in APOC3, an apolipoprotein composition indicative of increased hepatic clearance. The underlying mechanism was independent of LPL, as CREBH reduced both triglycerides and cholesterol in LPL-deficient mice. Instead, APOE was critical for CREBH's ability to lower circulating remnant lipoproteins because it failed to reduce TRL cholesterol in Apoe-/- mice. Importantly, individuals with CREB3L3 loss-of-function mutations exhibited increased levels of remnant lipoproteins that were deprived of APOE. Recent evidence suggests that impaired clearance of TRL remnants promotes cardiovascular disease in patients with T1DM. Consistently, we found that hepatic expression of CREBH prevented the progression of diabetes-accelerated atherosclerosis. Our results support the proposal that CREBH acts through an APOE-dependent pathway to increase hepatic clearance of remnant lipoproteins. They also implicate elevated levels of remnants in the pathogenesis of atherosclerosis in T1DM.
PMID: 34491909
ISSN: 1558-8238
CID: 5108482

Pcpe2, a Novel Extracellular Matrix Protein, Regulates Adipocyte SR-BI-Mediated High-Density Lipoprotein Uptake

Xu, Hao; Thomas, Michael J; Kaul, Sushma; Kallinger, Rachel; Ouweneel, Amber B; Maruko, Elisa; Oussaada, Sabrina M; Jongejan, Aldo; Cense, Huib A; Nieuwdorp, Max; Serlie, Mireille J; Goldberg, Ira J; Civelek, Mete; Parks, Brian W; Lusis, Aldons J; Knaack, Darcy; Schill, Rebecca L; May, Sarah C; Reho, John J; Grobe, Justin L; Gantner, Benjamin; Sahoo, Daisy; Sorci-Thomas, Mary G
OBJECTIVE: CONCLUSIONS:Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.
PMID: 34551590
ISSN: 1524-4636
CID: 5026882