Try a new search

Format these results:

Searched for:

person:heb02

in-biosketch:yes

Total Results:

57


Spontaneous Neural Dynamics and Multi-scale Network Organization

Foster, Brett L; He, Biyu J; Honey, Christopher J; Jerbi, Karim; Maier, Alexander; Saalmann, Yuri B
Spontaneous neural activity has historically been viewed as task-irrelevant noise that should be controlled for via experimental design, and removed through data analysis. However, electrophysiology and functional MRI studies of spontaneous activity patterns, which have greatly increased in number over the past decade, have revealed a close correspondence between these intrinsic patterns and the structural network architecture of functional brain circuits. In particular, by analyzing the large-scale covariation of spontaneous hemodynamics, researchers are able to reliably identify functional networks in the human brain. Subsequent work has sought to identify the corresponding neural signatures via electrophysiological measurements, as this would elucidate the neural origin of spontaneous hemodynamics and would reveal the temporal dynamics of these processes across slower and faster timescales. Here we survey common approaches to quantifying spontaneous neural activity, reviewing their empirical success, and their correspondence with the findings of neuroimaging. We emphasize invasive electrophysiological measurements, which are amenable to amplitude- and phase-based analyses, and which can report variations in connectivity with high spatiotemporal precision. After summarizing key findings from the human brain, we survey work in animal models that display similar multi-scale properties. We highlight that, across many spatiotemporal scales, the covariance structure of spontaneous neural activity reflects structural properties of neural networks and dynamically tracks their functional repertoire.
PMCID:4746329
PMID: 26903823
ISSN: 1662-5137
CID: 2255782

Scale-Free Neural and Physiological Dynamics in Naturalistic Stimuli Processing

Lin, Amy; Maniscalco, Brian; He, Biyu J
Neural activity recorded at multiple spatiotemporal scales is dominated by arrhythmic fluctuations without a characteristic temporal periodicity. Such activity often exhibits a 1/f-type power spectrum, in which power falls off with increasing frequency following a power-law function: [Formula: see text], which is indicative of scale-free dynamics. Two extensively studied forms of scale-free neural dynamics in the human brain are slow cortical potentials (SCPs)-the low-frequency (<5 Hz) component of brain field potentials-and the amplitude fluctuations of alpha oscillations, both of which have been shown to carry important functional roles. In addition, scale-free dynamics characterize normal human physiology such as heartbeat dynamics. However, the exact relationships among these scale-free neural and physiological dynamics remain unclear. We recorded simultaneous magnetoencephalography and electrocardiography in healthy subjects in the resting state and while performing a discrimination task on scale-free dynamical auditory stimuli that followed different scale-free statistics. We observed that long-range temporal correlation (captured by the power-law exponent beta) in SCPs positively correlated with that of heartbeat dynamics across time within an individual and negatively correlated with that of alpha-amplitude fluctuations across individuals. In addition, across individuals, long-range temporal correlation of both SCP and alpha-oscillation amplitude predicted subjects' discrimination performance in the auditory task, albeit through antagonistic relationships. These findings reveal interrelations among different scale-free neural and physiological dynamics and initial evidence for the involvement of scale-free neural dynamics in the processing of natural stimuli, which often exhibit scale-free dynamics.
PMCID:5075946
PMID: 27822495
ISSN: 2373-2822
CID: 2303722

Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

Ponce-Alvarez, Adrian; He, Biyu J; Hagmann, Patric; Deco, Gustavo
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
PMCID:4552873
PMID: 26317432
ISSN: 1553-7358
CID: 1781102

Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms

Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J
Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be approximately 60-70 ms earlier. Slow brain waves recorded approximately 2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement.
PMCID:4420786
PMID: 25948272
ISSN: 1529-2401
CID: 1781112

Editorial [Editorial]

Seth, Anil K; He, Biyu J; Hohwy, Jakob
PMCID:5934887
PMID: 29877513
ISSN: 2057-2107
CID: 4590312

Resting-state brain signals and functional connectivity mapping

Chapter by: He, Biyu J
in: The brain adapting with pain : contribution of neuroimaging technology to pain mechanisms by Apkarian, A (Ed)
Philadelphia : Wolters Kluwer, 2015
pp. ?-?
ISBN: 1496317491
CID: 4590332

Modeling the electrocorticographical (ECoG) signals

Chapter by: He, Biyu J
in: Encyclopedia of computational neuroscience by Jaeger, Dieter; Jung, Ranu (Eds)
New York : Springer Reference, [2015]
pp. ?-?
ISBN: 9781461466758
CID: 4590342

Scale-free brain activity: past, present, and future

He, Biyu J
Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, 'scale-free'). This characteristic of scale-free brain activity distinguishes it from brain oscillations. Although scale-free brain activity and brain oscillations coexist, our understanding of the former remains limited. Recent research has shed light on the spatiotemporal organization, functional significance, and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights into, and analytical tools for, cognitive neuroscience.
PMCID:4149861
PMID: 24788139
ISSN: 1879-307x
CID: 1781122

Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks

Ciuciu, Philippe; Abry, Patrice; He, Biyu J
Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra - a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework - a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and while performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately - resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well.
PMCID:4043862
PMID: 24675649
ISSN: 1095-9572
CID: 1781132

Spatiotemporal dissociation of brain activity underlying subjective awareness, objective performance and confidence

Li, Qi; Hill, Zachary; He, Biyu J
Despite intense recent research, the neural correlates of conscious visual perception remain elusive. The most established paradigm for studying brain mechanisms underlying conscious perception is to keep the physical sensory inputs constant and identify brain activities that correlate with the changing content of conscious awareness. However, such a contrast based on conscious content alone would not only reveal brain activities directly contributing to conscious perception, but also include brain activities that precede or follow it. To address this issue, we devised a paradigm whereby we collected, trial-by-trial, measures of objective performance, subjective awareness, and the confidence level of subjective awareness. Using magnetoencephalography recordings in healthy human volunteers, we dissociated brain activities underlying these different cognitive phenomena. Our results provide strong evidence that widely distributed slow cortical potentials (SCPs) correlate with subjective awareness, even after the effects of objective performance and confidence were both removed. The SCP correlate of conscious perception manifests strongly in its waveform, phase, and power. In contrast, objective performance and confidence were both contributed by relatively transient brain activity. These results shed new light on the brain mechanisms of conscious, unconscious, and metacognitive processing.
PMCID:3960476
PMID: 24647958
ISSN: 1529-2401
CID: 1781142