Try a new search

Format these results:

Searched for:

person:heratr01

in-biosketch:true

Total Results:

43


Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells

Herati, Ramin Sedaghat; Muselman, Alexander; Vella, Laura; Bengsch, Bertram; Parkhouse, Kaela; Del Alcazar, Daniel; Kotzin, Jonathan; Doyle, Susan A; Tebas, Pablo; Hensley, Scott E; Su, Laura F; Schmader, Kenneth E; Wherry, E John
T follicular helper (Tfh) CD4 cells are crucial providers of B cell help during adaptive immune responses. A circulating population of CD4 T cells, termed cTfh, have similarity to lymphoid Tfh, can provide B cell help, and responded to influenza vaccination. However, it is unclear whether human vaccination-induced cTfh respond in an antigen-specific manner and whether they form long-lasting memory. Here, we identified a cTfh population that expressed multiple T cell activation markers and could be readily identified by coexpression of ICOS and CD38. This subset expressed more Bcl-6, c-Maf, and IL-21 than other blood CD4 subsets. Influenza vaccination induced a strong response in the ICOS+CD38+ cTfh at day 7, and this population included hemagglutinin-specific cells by tetramer staining and antigen-stimulated Activation Induced Marker (AIM) expression. Moreover, TCRB sequencing identified a clonal response in ICOS+CD38+ cTfh that correlated strongly with the increased circulating ICOS+CD38+ cTfh frequency and the circulating plasmablast response. In subjects who received successive annual vaccinations, a recurrent oligoclonal response was identified in the ICOS+CD38+ cTfh subset at 7 days after every vaccination. These oligoclonal responses in ICOS+CD38+ cTfh after vaccination persisted in the ICOS-CD38- cTfh repertoire in subsequent years, suggesting clonal maintenance in a memory reservoir in the more-stable ICOS-CD38- cTfh subset. These data highlight the antigen-specificity, lineage relationships and memory properties of human cTfh responses to vaccination, providing new avenues for tracking and monitoring cTfh responses during infection and vaccination in humans.
PMCID:5469419
PMID: 28620653
ISSN: 2470-9468
CID: 4050562

Vaccine-induced ICOS+CD38+ circulating Tfh are sensitive biosensors of age-related changes in inflammatory pathways

Herati, Ramin Sedaghat; Silva, Luisa Victoria; Vella, Laura A; Muselman, Alexander; Alanio, Cecile; Bengsch, Bertram; Kurupati, Raj K; Kannan, Senthil; Manne, Sasikanth; Kossenkov, Andrew V; Canaday, David H; Doyle, Susan A; Ertl, Hildegund C J; Schmader, Kenneth E; Wherry, E John
Humoral immune responses are dysregulated with aging, but the cellular and molecular pathways involved remain incompletely understood. In particular, little is known about the effects of aging on T follicular helper (Tfh) CD4 cells, the key cells that provide help to B cells for effective humoral immunity. We performed transcriptional profiling and cellular analysis on circulating Tfh before and after influenza vaccination in young and elderly adults. First, whole-blood transcriptional profiling shows that ICOS+CD38+ cTfh following vaccination preferentially enriches in gene sets associated with youth versus aging compared to other circulating T cell types. Second, vaccine-induced ICOS+CD38+ cTfh from the elderly had increased the expression of genes associated with inflammation, including tumor necrosis factor-nuclear factor κB (TNF-NF-κB) pathway activation. Finally, vaccine-induced ICOS+CD38+ cTfh display strong enrichment for signatures of underlying age-associated biological changes. These data highlight the ability to use vaccine-induced cTfh as cellular "biosensors" of underlying inflammatory and/or overall immune health.
PMCID:8149371
PMID: 34095875
ISSN: 2666-3791
CID: 4898242

Poor antigen-specific responses to the second BNT162b2 mRNA vaccine dose in SARS-CoV-2-experienced individuals

Samanovic, Marie I; Cornelius, Amber R; Wilson, Jimmy P; Karmacharya, Trishala; Gray-Gaillard, Sophie L; Allen, Joseph Richard; Hyman, Sara Wesley; Moritz, Gali; Ali, Mahnoor; Koralov, Sergei B; Mulligan, Mark J; Herati, Ramin Sedaghat
The advent of COVID-19 vaccines will play a major role in helping to end the pandemic that has killed millions worldwide. Vaccine candidates have demonstrated robust humoral responses and have protected against infection. However, efficacy trials were focused on individuals with no prior exposure to SARS-CoV-2, and, as a result, little is known about immune responses induced by these mRNA vaccines in individuals who recovered from COVID-19. Here, we evaluated immune responses in 32 subjects who received two-dose BNT162b2 mRNA vaccination. In individuals naive to SARS-CoV-2, we observed robust increases in humoral and antigen-specific antibody-secreting cell (ASC) responses following each dose of vaccine, whereas individuals with prior exposure to SARS-CoV-2 demonstrated strong humoral and antigen-specific ASC responses to the first dose but muted responses to the second dose of the vaccine for the time points studied. These data highlight an important gap in our knowledge and may have major implications for how these vaccines should be used to prevent COVID-19.
PMCID:7885942
PMID: 33594383
ISSN: n/a
CID: 4786862

T follicular helper cells in human efferent lymph retain lymphoid characteristics

Vella, Laura A; Buggert, Marcus; Manne, Sasikanth; Herati, Ramin S; Sayin, Ismail; Kuri-Cervantes, Leticia; Bukh Brody, Irene; O'Boyle, Kaitlin C; Kaprielian, Hagop; Giles, Josephine R; Nguyen, Son; Muselman, Alexander; Antel, Jack P; Bar-Or, Amit; Johnson, Matthew E; Canaday, David H; Naji, Ali; Ganusov, Vitaly V; Laufer, Terri M; Wells, Andrew D; Dori, Yoav; Itkin, Maxim G; Betts, Michael R; Wherry, E John
T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.
PMCID:6668682
PMID: 31264971
ISSN: 1558-8238
CID: 4050622

PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine

Herati, Ramin Sedaghat; Knorr, David A; Vella, Laura A; Silva, Luisa Victoria; Chilukuri, Lakshmi; Apostolidis, Sokratis A; Huang, Alexander C; Muselman, Alexander; Manne, Sasikanth; Kuthuru, Oliva; Staupe, Ryan P; Adamski, Sharon A; Kannan, Senthil; Kurupati, Raj K; Ertl, Hildegund C J; Wong, Jeffrey L; Bournazos, Stylianos; McGettigan, Suzanne; Schuchter, Lynn M; Kotecha, Ritesh R; Funt, Samuel A; Voss, Martin H; Motzer, Robert J; Lee, Chung-Han; Bajorin, Dean F; Mitchell, Tara C; Ravetch, Jeffrey V; Wherry, E John
Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.
PMID: 35902637
ISSN: 1529-2916
CID: 5276912

Increased resistance of SARS-CoV-2 Omicron variant to neutralization by vaccine-elicited and therapeutic antibodies

Tada, Takuya; Zhou, Hao; Dcosta, Belinda M; Samanovic, Marie I; Chivukula, Vidya; Herati, Ramin S; Hubbard, Stevan R; Mulligan, Mark J; Landau, Nathaniel R
BACKGROUND:SARS-CoV-2 vaccines currently authorized for emergency use have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against earlier SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant presents an obstacle both to vaccine protection and monoclonal antibody therapies. METHODS:Pseudotyped lentiviruses were incubated with serum from vaccinated and boosted donors or therapeutic monoclonal antibody and then applied to target cells. After 2 days, luciferase activity was measured in a microplate luminometer. Resistance mutations of the Omicron spike were identified using point-mutated spike protein pseudotypes and mapped onto the three-dimensional spike protein structure. FINDINGS/RESULTS:Virus with the Omicron spike protein was 26-fold resistant to neutralization by recovered donor sera and 26-34-fold resistance to Pfizer BNT162b2 and Moderna vaccine-elicited antibodies following two immunizations. A booster immunization increased neutralizing titres against Omicron. Neutralizing titres against Omicron were increased in the sera with a history of prior SARS-CoV-2 infection. Analysis of the therapeutic monoclonal antibodies showed that the Regeneron and Eli Lilly monoclonal antibodies were ineffective against the Omicron pseudotype while Sotrovimab and Evusheld were partially effective. INTERPRETATION/CONCLUSIONS:The results highlight the benefit of a booster immunization to protect against the Omicron variant and demonstrate the challenge to monoclonal antibody therapy. The decrease in neutralizing titres against Omicron suggest that much of the vaccine efficacy may rely on T cells. FUNDING/BACKGROUND:The work was funded by grants from the NIH to N.R.L. (DA046100, AI122390 and AI120898) and 55 to M.J.M. (UM1AI148574).
PMCID:9021600
PMID: 35465948
ISSN: 2352-3964
CID: 5205452

Immunogenicity after heterologous third dose COVID-19 vaccination in a heart transplant recipient [Letter]

Mehta, Sapna A; Reyentovich, Alex; Montgomery, Robert A; Segev, Dorry L; Gebel, Howard M; Bray, Robert A; Samanovic, Marie I; Cornelius, Amber R; Mulligan, Mark J; Herati, Ramin S
PMID: 35107835
ISSN: 1399-0012
CID: 5153612

Evaluation of Immune Response and Disease Status in SLE Patients Following SARS-CoV-2 Vaccination

Izmirly, Peter M; Kim, Mimi Y; Samanovic, Marie; Fernandez-Ruiz, Ruth; Ohana, Sharon; Deonaraine, Kristina K; Engel, Alexis J; Masson, Mala; Xie, Xianhong; Cornelius, Amber R; Herati, Ramin S; Haberman, Rebecca H; Scher, Jose U; Guttmann, Allison; Blank, Rebecca B; Plotz, Benjamin; Haj-Ali, Mayce; Banbury, Brittany; Stream, Sara; Hasan, Ghadeer; Ho, Gary; Rackoff, Paula; Blazer, Ashira D; Tseng, Chung-E; Belmont, H Michael; Saxena, Amit; Mulligan, Mark J; Clancy, Robert M; Buyon, Jill P
OBJECTIVE:To evaluate seroreactivity and disease flares after COVID-19 vaccination in a multi-ethnic/racial cohort of patients with systemic lupus erythematosus (SLE). METHODS:90 SLE patients and 20 healthy controls receiving a complete COVID-19 vaccine regimen were included. IgG seroreactivity to the SARS-CoV-2 spike receptor-binding domain (RBD) and SARS-CoV-2 microneutralization were used to evaluate B cell responses; IFN-γ production to assess T cell responses was measured by ELISpot. Disease activity was measured by the hybrid SLE disease activity index (SLEDAI) and flares were assigned by the SELENA/SLEDAI flare index. RESULTS:Overall, fully vaccinated SLE patients produced significantly lower IgG antibodies against SARS-CoV-2 spike RBD than controls. Twenty-six SLE patients (28.8%) generated an IgG response below that of the lowest control (<100 units/ml). In logistic regression analyses, the use of any immunosuppressant or prednisone and a normal anti-dsDNA level prior to vaccination associated with decreased vaccine responses. IgG seroreactivity to the SARS-CoV-2 Spike RBD strongly correlated with the SARS-CoV-2 microneutralization titers and antigen-specific IFN-γ production determined by ELISpot. In a subset of patients with poor antibody responses, IFN-γ production was likewise diminished. Pre-/post-vaccination SLEDAI scores were similar. Only 11.4% of patients had a post-vaccination flare; 1.3% were severe. CONCLUSION/CONCLUSIONS:In a multi-ethnic/racial study of SLE patients 29% had a low response to the COVID-19 vaccine which was associated with being on immunosuppression. Reassuringly, disease flares were rare. While minimal protective levels remain unknown, these data suggest protocol development is needed to assess efficacy of booster vaccination.
PMCID:8426963
PMID: 34347939
ISSN: 2326-5205
CID: 5046532

Neutralization of SARS-CoV-2 Variants by mRNA and Adenoviral Vector Vaccine-Elicited Antibodies

Tada, Takuya; Zhou, Hao; Samanovic, Marie I; Dcosta, Belinda M; Cornelius, Amber; Herati, Ramin S; Mulligan, Mark J; Landau, Nathaniel R
The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine effectiveness. Here, neutralizing antibody titers elicited by mRNA-based and adenoviral vector-based vaccines against variant pseudotyped viruses were measured. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals had less neutralizing titer (IC50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest a potential benefit by second immunization following Ad26.COV2.S to increase protection from current and future variants.
PMID: 35350781
ISSN: 1664-3224
CID: 5201082

Antibody Response and Cellular Phenotyping in Kidney Transplant Recipients Following SARS-CoV-2 Vaccination [Meeting Abstract]

Ali, NM; Miles, J; Mehta, S; Tatapudi, V; Lonze, B; Weldon, E; Stewart, Z; DiMaggio, C; Allen, J; Gray-Gaillard, S; Solis, S; Tuen, M; Leonard, J; Montgomery, R; Herati, R
ORIGINAL:0015583
ISSN: 1600-6143
CID: 5231042