Try a new search

Format these results:

Searched for:

person:heratr01

in-biosketch:true

Total Results:

52


Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease

Haberman, Rebecca H; Herati, Ramin; Simon, David; Samanovic, Marie; Blank, Rebecca B; Tuen, Michael; Koralov, Sergei; Atreya, Raja; Tascilar, Koray; Allen, Joseph; Castillo, Rochelle; Cornelius, Amber; Rackoff, Paula; Solomon, Gary; Adhikari, Samrachana; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya M; Neurath, Markus; Abramson, Steven B; Schett, Georg; Mulligan, Mark; Scher, Jose U
PMID: 34035003
ISSN: 1468-2060
CID: 4888812

Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination

Painter, Mark M; Mathew, Divij; Goel, Rishi R; Apostolidis, Sokratis A; Pattekar, Ajinkya; Kuthuru, Oliva; Baxter, Amy E; Herati, Ramin S; Oldridge, Derek A; Gouma, Sigrid; Hicks, Philip; Dysinger, Sarah; Lundgreen, Kendall A; Kuri-Cervantes, Leticia; Adamski, Sharon; Hicks, Amanda; Korte, Scott; Giles, Josephine R; Weirick, Madison E; McAllister, Christopher M; Dougherty, Jeanette; Long, Sherea; D'Andrea, Kurt; Hamilton, Jacob T; Betts, Michael R; Bates, Paul; Hensley, Scott E; Grifoni, Alba; Weiskopf, Daniela; Sette, Alessandro; Greenplate, Allison R; Wherry, E John
SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.
PMCID:8361141
PMID: 34453880
ISSN: 1097-4180
CID: 5011612

Methotrexate hampers immunogenicity to BNT162B2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease [Meeting Abstract]

Haberman, R; Herati, R; Simon, D; Samanovic, M; Tuen, M; Blank, R; Koralov, S; Atreya, R; Tascilar, K; Allen, J; Castillo, R; Cornelius, A; Rackoff, P; Solomon, G; Adhikari, S; Azar, N; Rosenthal, P; Izmirly, P; Samuels, J; Golden, B; Reddy, S; Neurath, M; Abramson, S B; Schett, G; Mulligan, M; Scher, J
Background/Purpose: Patients with immune mediated inflammatory disorders (IMIDs) have an inherently heightened susceptibility to infection and may be considered high risk for developing COVID-19. While data regarding the COVID-19 vaccine's immunogenicity in an immunocompetent adult population is rapidly emerging, the ability of IMID patients to adequately respond to these vaccines is not known. Here, we investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with IMIDs on immunomodulatory treatment Methods: Patients with immune mediated inflammatory disorders (IMIDs) have an inherently heightened susceptibility to infection and may be considered high risk for developing COVID-19. While data regarding the COVID-19 vaccine's immunogenicity in an immunocompetent adult population is rapidly emerging, the ability of IMID patients to adequately respond to these vaccines is not known. Here, we investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with IMIDs on immunomodulatory treatment.
Result(s): The NY cohort baseline characteristics are found in Table 1. The Erlangen cohort consisted of 182 healthy subjects, 11 subjects with IMID receiving TNFi monotherapy, and 20 subjects with IMID on MTX monotherapy. In both cohorts, healthy individuals and those with IMID not on MTX were similar in age, while those IMID patients receiving MTX were generally older. In the NY cohort, of the healthy participants, 96.3% demonstrated adequate humoral immune response. Patients with IMID not on MTX achieved a similar rate of high antibody response rate (91.8%), while those on MTX had a lower rate of adequate humoral response (75.0%) (Figure 1A). This remains true even after the exclusion of patients who had evidence of prior COVID-19 infection (P= 0.014). Of note, 3 out of the 4 IMID patients receiving rituximab did not produce an adequate response. Similarly, in the Erlangen validation cohort, 98.3% of healthy controls, 90.9% of patients with IMID receiving TNFi monotherapy, and 50.0% receiving MTX monotherapy achieved adequate immunogenicity (Figure 1B). These differences remain significant when combining the cohorts, using a stricter definition of adequate response, and in a subgroup analysis by age. Cellular response was also analyzed in a subgroup of the NY cohort before and after second vaccination. Activated CD8+ T cells (CD8+ T cells expressing Ki67 and CD38) and the granzyme B-producing subset of these activated CD8+ T cells, were induced in immunocompetent adults and those with IMID not on MTX, but not induced in patients receiving MTX (Figure 2).
Conclusion(s): In two independent cohorts of IMID patients, MTX, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking MTX to increase the chances of immunization efficacy against SARS-CoV-2, as has been demonstrated for other viral vaccines
PMCID:
EMBASE:637275567
ISSN: 2326-5205
CID: 5164692

Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes

Tada, Takuya; Dcosta, Belinda M; Samanovic, Marie I; Herati, Ramin S; Cornelius, Amber; Zhou, Hao; Vaill, Ada; Kazmierski, Wes; Mulligan, Mark J; Landau, Nathaniel R
The increasing prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with spike protein mutations raises concerns that antibodies elicited by natural infection or vaccination and therapeutic monoclonal antibodies will become less effective. We show that convalescent-phase sera neutralize pseudotyped viruses with the B.1.1.7, B.1.351, B.1.1.248, COH.20G/677H, 20A.EU2, and mink cluster 5 spike proteins with only a minor loss in titer. Similarly, antibodies elicited by Pfizer BNT162b2 vaccination neutralized B.1.351 and B.1.1.248 with only a 3-fold decrease in titer, an effect attributable to E484K. Analysis of the Regeneron monoclonal antibodies REGN10933 and REGN10987 showed that REGN10933 has lost neutralizing activity against the B.1.351 and B.1.1.248 pseudotyped viruses, and the cocktail is 9- to 15-fold decreased in titer. These findings suggest that antibodies elicited by natural infection and by the Pfizer vaccine will maintain protection against the B.1.1.7, B.1.351, and B.1.1.248 variants but that monoclonal antibody therapy may be less effective for patients infected with B.1.351 or B.1.1.248 SARS-CoV-2. IMPORTANCE The rapid evolution of SARS-CoV-2 variants has raised concerns with regard to their potential to escape from vaccine-elicited antibodies and anti-spike protein monoclonal antibodies. We report here on an analysis of sera from recovered patients and vaccinated individuals and on neutralization by Regeneron therapeutic monoclonal antibodies. Overall, the variants were neutralized nearly as well as the wild-type pseudotyped virus. The B.1.351 variant was somewhat resistant to vaccine-elicited antibodies but was still readily neutralized. One of the two Regeneron therapeutic monoclonal antibodies seems to have lost most of its activity against the B.1.351 variant, raising concerns that the combination therapy might be less effective for some patients. The findings should alleviate concerns that vaccines will become ineffective but suggest the importance of continued surveillance for potential new variants.
PMID: 34060334
ISSN: 2150-7511
CID: 4891172

SARS-CoV-2 vaccines for all but a single dose for COVID-19 survivors

Frieman, Matthew; Harris, Anthony D; Herati, Ramin Sedaghat; Krammer, Florian; Mantovani, Alberto; Rescigno, Maria; Sajadi, Mohammad M; Simon, Viviana
PMCID:8149267
PMID: 34051441
ISSN: 2352-3964
CID: 4890632

Vaccine-induced ICOS+CD38+ circulating Tfh are sensitive biosensors of age-related changes in inflammatory pathways

Herati, Ramin Sedaghat; Silva, Luisa Victoria; Vella, Laura A; Muselman, Alexander; Alanio, Cecile; Bengsch, Bertram; Kurupati, Raj K; Kannan, Senthil; Manne, Sasikanth; Kossenkov, Andrew V; Canaday, David H; Doyle, Susan A; Ertl, Hildegund C J; Schmader, Kenneth E; Wherry, E John
Humoral immune responses are dysregulated with aging, but the cellular and molecular pathways involved remain incompletely understood. In particular, little is known about the effects of aging on T follicular helper (Tfh) CD4 cells, the key cells that provide help to B cells for effective humoral immunity. We performed transcriptional profiling and cellular analysis on circulating Tfh before and after influenza vaccination in young and elderly adults. First, whole-blood transcriptional profiling shows that ICOS+CD38+ cTfh following vaccination preferentially enriches in gene sets associated with youth versus aging compared to other circulating T cell types. Second, vaccine-induced ICOS+CD38+ cTfh from the elderly had increased the expression of genes associated with inflammation, including tumor necrosis factor-nuclear factor κB (TNF-NF-κB) pathway activation. Finally, vaccine-induced ICOS+CD38+ cTfh display strong enrichment for signatures of underlying age-associated biological changes. These data highlight the ability to use vaccine-induced cTfh as cellular "biosensors" of underlying inflammatory and/or overall immune health.
PMCID:8149371
PMID: 34095875
ISSN: 2666-3791
CID: 4898242

Methotrexate Hampers Immunogenicity to BNT162b2 mRNA COVID-19 Vaccine in Immune-Mediated Inflammatory Disease

Haberman, Rebecca H; Herati, Ramin Sedaghat; Simon, David; Samanovic, Marie; Blank, Rebecca B; Tuen, Michael; Koralov, Sergei B; Atreya, Raja; Tascilar, Koray; Allen, Joseph R; Castillo, Rochelle; Cornelius, Amber R; Rackoff, Paula; Solomon, Gary; Adhikari, Samrachana; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya; Neurath, Markus; Abramson, Steven B; Schett, Georg; Mulligan, Mark J; Scher, Jose U
Objective/UNASSIGNED:To investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. Methods/UNASSIGNED:Established patients at NYU Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunization. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analyzed for humoral response. Cellular immune response to SARS-CoV-2 was further analyzed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany were also analyzed for humoral immune response. Results/UNASSIGNED:Although healthy subjects (n=208) and IMID patients on biologic treatments (mostly on TNF blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, IMID patients do not demonstrate an increase in CD8+ T cell activation after vaccination. Conclusions/UNASSIGNED:In two independent cohorts of IMID patients, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunization efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines. KEY MESSAGES/UNASSIGNED:These results suggest that patients on methotrexate may need alternate vaccination strategies such as additional doses of vaccine, dose modification of methotrexate, or even a temporary discontinuation of this drug. Further studies will be required to explore the effect of these approaches on mRNA vaccine immunogenicity.
PMCID:8132259
PMID: 34013285
ISSN: n/a
CID: 4877422

Improving oligo-conjugated antibody signal in multimodal single-cell analysis

Buus, Terkild B; Herrera, Alberto; Ivanova, Ellie; Mimitou, Eleni; Cheng, Anthony; Herati, Ramin S; Papagiannakopoulos, Thales; Smibert, Peter; Odum, Niels; Koralov, Sergei B
Simultaneous measurement of surface proteins and gene expression within single cells using oligo-conjugated antibodies offers high-resolution snapshots of complex cell populations. Signal from oligo-conjugated antibodies is quantified by high-throughput sequencing and is highly scalable and sensitive. We investigated the response of oligo-conjugated antibodies towards four variables: concentration, staining volume, cell number at staining, and tissue. We find that staining with recommended antibody concentrations causes unnecessarily high background and amount of antibody used can be drastically reduced without loss of biological information. Reducing staining volume only affects antibodies targeting abundant epitopes used at low concentrations and is counteracted by reducing cell numbers. Adjusting concentrations increases signal, lowers background, and reduces costs. Background signal can account for a major fraction of total sequencing and is primarily derived from antibodies used at high concentrations. This study provides new insight into titration response and background of oligo-conjugated antibodies and offers concrete guidelines to improve such panels.
PMCID:8051954
PMID: 33861199
ISSN: 2050-084x
CID: 4846362

Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies [PrePrint]

Tada, Takuya; Dcosta, Belinda M; Samanovic-Golden, Marie; Herati, Ramin S; Cornelius, Amber; Mulligan, Mark J; Landau, Nathaniel R
The increasing prevalence of SARS-CoV-2 variants with mutations in the spike protein has raised concerns that recovered individuals may not be protected from reinfection and that current vaccines will become less effective. The B.1.1.7 isolate identified in the United Kingdom and B.1.351 isolate identified in the Republic of South Africa encode spike proteins with multiple mutations in the S1 and S2 subunits. In addition, variants have been identified in Columbus, Ohio (COH.20G/677H), Europe (20A.EU2) and in domesticated minks. Analysis by antibody neutralization of pseudotyped viruses showed that convalescent sera from patients infected prior to the emergence of the variant viruses neutralized viruses with the B.1.1.7, B.1.351, COH.20G/677H Columbus Ohio, 20A.EU2 Europe and mink cluster 5 spike proteins with only a minor decrease in titer compared to that of the earlier D614G spike protein. Serum specimens from individuals vaccinated with the BNT162b2 mRNA vaccine neutralized D614G virus with titers that were on average 7-fold greater than convalescent sera. Vaccine elicited antibodies neutralized virus with the B.1.1.7 spike protein with titers similar to D614G virus and neutralized virus with the B.1.351 spike with, on average, a 3-fold reduction in titer (1:500), a titer that was still higher than the average titer with which convalescent sera neutralized D614G (1:139). The reduction in titer was attributable to the E484K mutation in the RBD. The B.1.1.7 and B.1.351 viruses were not more infectious than D614G on ACE2.293T cells in vitro but N501Y, an ACE2 contacting residue present in the B.1.1.7, B.1.351 and COH.20G/677H spike proteins caused higher affinity binding to ACE2, likely contributing to their increased transmissibility. These findings suggest that antibodies elicited by primary infection and by the BNT162b2 mRNA vaccine are likely to maintain protective efficacy against B.1.1.7 and most other variants but that the partial resistance of virus with the B.1.351 spike protein could render some individuals less well protected, supporting a rationale for the development of modified vaccines containing E484K.
PMCID:7872356
PMID: 33564768
ISSN: 2692-8205
CID: 4779712

TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision

Chen, Zeyu; Ji, Zhicheng; Ngiow, Shin Foong; Manne, Sasikanth; Cai, Zhangying; Huang, Alexander C; Johnson, John; Staupe, Ryan P; Bengsch, Bertram; Xu, Caiyue; Yu, Sixiang; Kurachi, Makoto; Herati, Ramin S; Vella, Laura A; Baxter, Amy E; Wu, Jennifer E; Khan, Omar; Beltra, Jean-Christophe; Giles, Josephine R; Stelekati, Erietta; McLane, Laura M; Lau, Chi Wai; Yang, Xiaolu; Berger, Shelley L; Vahedi, Golnaz; Ji, Hongkai; Wherry, E John
TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.
PMID: 31606264
ISSN: 1097-4180
CID: 4192622