Try a new search

Format these results:

Searched for:



Total Results:


Super-enhancer-driven expression of BAHCC1 promotes melanoma cell proliferation and genome stability

Berico, Pietro; Nogaret, Maguelone; Cigrang, Max; Lallement, Antonin; Vand-Rajabpour, Fatemeh; Flores-Yanke, Amanda; Gambi, Giovanni; Davidson, Guillaume; Seno, Leane; Obid, Julian; Vokshi, Bujamin H; Le Gras, Stephanie; Mengus, Gabrielle; Ye, Tao; Cordero, Carlos Fernandez; Dalmasso, Mélanie; Compe, Emmanuel; Bertolotto, Corine; Hernando, Eva; Davidson, Irwin; Coin, Frédéric
Super-enhancers (SEs) are stretches of enhancers ensuring a high level of expression of key genes associated with cell function. The identification of cancer-specific SE-driven genes is a powerful means for the development of innovative therapeutic strategies. Here, we identify a MITF/SOX10/TFIIH-dependent SE promoting the expression of BAHCC1 in a broad panel of melanoma cells. BAHCC1 is highly expressed in metastatic melanoma and is required for tumor engraftment, growth, and dissemination. Integrative genomics analyses reveal that BAHCC1 is a transcriptional regulator controlling expression of E2F/KLF-dependent cell-cycle and DNA-repair genes. BAHCC1 associates with BRG1-containing remodeling complexes at the promoters of these genes. BAHCC1 silencing leads to decreased cell proliferation and delayed DNA repair. Consequently, BAHCC1 deficiency cooperates with PARP inhibition to induce melanoma cell death. Our study identifies BAHCC1 as an SE-driven gene expressed in melanoma and demonstrates how its inhibition can be exploited as a therapeutic target.
PMID: 37924516
ISSN: 2211-1247
CID: 5602972

Methylation of nonessential genes in cutaneous melanoma - Rule Out hypothesis

Gorlov, Ivan P; Conway, Kathleen; Edmiston, Sharon N; Parrish, Eloise A; Hao, Honglin; Amos, Christopher I; Tsavachidis, Spiridon; Gorlova, Olga Y; Begg, Colin; Hernando, Eva; Cheng, Chao; Shen, Ronglai; Orlow, Irene; Luo, Li; Ernstoff, Marc S; Kuan, Pei Fen; Ollila, David W; Tsai, Yihsuan S; Berwick, Marianne; Thomas, Nancy E
Differential methylation plays an important role in melanoma development and is associated with survival, progression and response to treatment. However, the mechanisms by which methylation promotes melanoma development are poorly understood. The traditional explanation of selective advantage provided by differential methylation postulates that hypermethylation of regulatory 5'-cytosine-phosphate-guanine-3' dinucleotides (CpGs) downregulates the expression of tumor suppressor genes and therefore promotes tumorigenesis. We believe that other (not necessarily alternative) explanations of the selective advantages of methylation are also possible. Here, we hypothesize that melanoma cells use methylation to shut down transcription of nonessential genes - those not required for cell survival and proliferation. Suppression of nonessential genes allows tumor cells to be more efficient in terms of energy and resource usage, providing them with a selective advantage over the tumor cells that transcribe and subsequently translate genes they do not need. We named the hypothesis the Rule Out (RO) hypothesis. The RO hypothesis predicts higher methylation of CpGs located in regulatory regions (CpG islands) of nonessential genes. It also predicts the higher methylation of regulatory CpGs linked to nonessential genes in melanomas compared to nevi and lower expression of nonessential genes in malignant (derived from melanoma) versus normal (derived from nonaffected skin) melanocytes. The analyses conducted using in-house and publicly available data found that all predictions derived from the RO hypothesis hold, providing observational support for the hypothesis.
PMID: 36805567
ISSN: 1473-5636
CID: 5433802

An epigenetic switch controls an alternative NR2F2 isoform that unleashes a metastatic program in melanoma

Davalos, Veronica; Lovell, Claudia D; Von Itter, Richard; Dolgalev, Igor; Agrawal, Praveen; Baptiste, Gillian; Kahler, David J; Sokolova, Elena; Moran, Sebastian; Piqué, Laia; Vega-Saenz de Miera, Eleazar; Fontanals-Cirera, Barbara; Karz, Alcida; Tsirigos, Aristotelis; Yun, Chi; Darvishian, Farbod; Etchevers, Heather C; Osman, Iman; Esteller, Manel; Schober, Markus; Hernando, Eva
Metastatic melanoma develops once transformed melanocytic cells begin to de-differentiate into migratory and invasive melanoma cells with neural crest cell (NCC)-like and epithelial-to-mesenchymal transition (EMT)-like features. However, it is still unclear how transformed melanocytes assume a metastatic melanoma cell state. Here, we define DNA methylation changes that accompany metastatic progression in melanoma patients and discover Nuclear Receptor Subfamily 2 Group F, Member 2 - isoform 2 (NR2F2-Iso2) as an epigenetically regulated metastasis driver. NR2F2-Iso2 is transcribed from an alternative transcriptional start site (TSS) and it is truncated at the N-terminal end which encodes the NR2F2 DNA-binding domain. We find that NR2F2-Iso2 expression is turned off by DNA methylation when NCCs differentiate into melanocytes. Conversely, this process is reversed during metastatic melanoma progression, when NR2F2-Iso2 becomes increasingly hypomethylated and re-expressed. Our functional and molecular studies suggest that NR2F2-Iso2 drives metastatic melanoma progression by modulating the activity of full-length NR2F2 (Isoform 1) over EMT- and NCC-associated target genes. Our findings indicate that DNA methylation changes play a crucial role during metastatic melanoma progression, and their control of NR2F2 activity allows transformed melanocytes to acquire NCC-like and EMT-like features. This epigenetically regulated transcriptional plasticity facilitates cell state transitions and metastatic spread.
PMID: 37015919
ISSN: 2041-1723
CID: 5463692

MiR-130b modulates the invasive, migratory, and metastatic behavior of leiomyosarcoma

Danielson, Laura S; Guijarro, Maria V; Menendez, Silvia; Higgins, Brett; Sun, Qiang; Mittal, Khushbakhat; Popiolek, Dorota A; Overholtzer, Michael; Palmer, Glyn D; Hernando, Eva
Leiomyosarcoma (LMS) is an aggressive, often poorly differentiated cancer of the smooth muscle (SM) lineage for which the molecular drivers of transformation and progression are poorly understood. In microRNA (miRNA) profiling studies, miR-130b was previously found to be upregulated in LMS vs. normal SM, and down-regulated during the differentiation of mesenchymal stem cells (MSCs) into SM, suggesting a role in LMS tumor progression. In the present study, the effects of miR-130b on human LMS tumorigenesis were investigated. Stable miR-130b overexpression enhanced invasion of LMS cells in vitro, and led to the formation of undifferentiated, pleomorphic tumors in vivo, with increased growth and metastatic potential compared to control LMS cells. TSC1 was identified as a direct miR-130b target in luciferase-3'UTR assays, and shRNA-mediated knockdown of TSC1 replicated miR-130b effects. Loss-of-function and gain-of-function studies showed that miR-130b levels regulate cell morphology and motility. Following miR-130b suppression, LMS cells adopted a rounded morphology, amoeboid mode of cell movement and enhanced invasive capacity that was Rho/ROCK dependent. Conversely, miR-130b-overexpressing LMS cells exhibited Rho-independent invasion, accompanied by down-regulation of Rho-pathway effectors. In mesenchymal stem cells, both miR-130b overexpression and TSC1 silencing independently impaired SM differentiation in vitro. Together, the data reveal miR-130b as a pro-oncogenic miRNA in LMS and support a miR-130b-TSC1 regulatory network that enhances tumor progression via inhibition of SM differentiation.
PMID: 36701370
ISSN: 1932-6203
CID: 5426622

InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma

Orlow, Irene; Sadeghi, Keimya D; Edmiston, Sharon N; Kenney, Jessica M; Lezcano, Cecilia; Wilmott, James S; Cust, Anne E; Scolyer, Richard A; Mann, Graham J; Lee, Tim K; Burke, Hazel; Jakrot, Valerie; Shang, Ping; Ferguson, Peter M; Boyce, Tawny W; Ko, Jennifer S; Ngo, Peter; Funchain, Pauline; Rees, Judy R; O'Connell, Kelli; Hao, Honglin; Parrish, Eloise; Conway, Kathleen; Googe, Paul B; Ollila, David W; Moschos, Stergios J; Hernando, Eva; Hanniford, Douglas; Argibay, Diana; Amos, Christopher I; Lee, Jeffrey E; Osman, Iman; Luo, Li; Kuan, Pei-Fen; Aurora, Arshi; Gould Rothberg, Bonnie E; Bosenberg, Marcus W; Gerstenblith, Meg R; Thompson, Cheryl; Bogner, Paul N; Gorlov, Ivan P; Holmen, Sheri L; Brunsgaard, Elise K; Saenger, Yvonne M; Shen, Ronglai; Seshan, Venkatraman; Nagore, Eduardo; Ernstoff, Marc S; Busam, Klaus J; Begg, Colin B; Thomas, Nancy E; Berwick, Marianne
INTRODUCTION:We are conducting a multicenter study to identify classifiers predictive of disease-specific survival in patients with primary melanomas. Here we delineate the unique aspects, challenges, and best practices for optimizing a study of generally small-sized pigmented tumor samples including primary melanomas of at least 1.05mm from AJTCC TNM stage IIA-IIID patients. We also evaluated tissue-derived predictors of extracted nucleic acids' quality and success in downstream testing. This ongoing study will target 1,000 melanomas within the international InterMEL consortium. METHODS:Following a pre-established protocol, participating centers ship formalin-fixed paraffin embedded (FFPE) tissue sections to Memorial Sloan Kettering Cancer Center for the centralized handling, dermatopathology review and histology-guided coextraction of RNA and DNA. Samples are distributed for evaluation of somatic mutations using next gen sequencing (NGS) with the MSK-IMPACTTM assay, methylation-profiling (Infinium MethylationEPIC arrays), and miRNA expression (Nanostring nCounter Human v3 miRNA Expression Assay). RESULTS:Sufficient material was obtained for screening of miRNA expression in 683/685 (99%) eligible melanomas, methylation in 467 (68%), and somatic mutations in 560 (82%). In 446/685 (65%) cases, aliquots of RNA/DNA were sufficient for testing with all three platforms. Among samples evaluated by the time of this analysis, the mean NGS coverage was 249x, 59 (18.6%) samples had coverage below 100x, and 41/414 (10%) failed methylation QC due to low intensity probes or insufficient Meta-Mixed Interquartile (BMIQ)- and single sample (ss)- Noob normalizations. Six of 683 RNAs (1%) failed Nanostring QC due to the low proportion of probes above the minimum threshold. Age of the FFPE tissue blocks (p<0.001) and time elapsed from sectioning to co-extraction (p = 0.002) were associated with methylation screening failures. Melanin reduced the ability to amplify fragments of 200bp or greater (absent/lightly pigmented vs heavily pigmented, p<0.003). Conversely, heavily pigmented tumors rendered greater amounts of RNA (p<0.001), and of RNA above 200 nucleotides (p<0.001). CONCLUSION:Our experience with many archival tissues demonstrates that with careful management of tissue processing and quality control it is possible to conduct multi-omic studies in a complex multi-institutional setting for investigations involving minute quantities of FFPE tumors, as in studies of early-stage melanoma. The study describes, for the first time, the optimal strategy for obtaining archival and limited tumor tissue, the characteristics of the nucleic acids co-extracted from a unique cell lysate, and success rate in downstream applications. In addition, our findings provide an estimate of the anticipated attrition that will guide other large multicenter research and consortia.
PMID: 37011054
ISSN: 1932-6203
CID: 5463642

Epigenetic Mechanisms Underlying Melanoma Resistance to Immune and Targeted Therapies

Rubanov, Andrey; Berico, Pietro; Hernando, Eva
Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.
PMID: 36497341
ISSN: 2072-6694
CID: 5381772

Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities

Karz, Alcida; Dimitrova, Maya; Kleffman, Kevin; Alvarez-Breckenridge, Christopher; Atkins, Michael B; Boire, Adrienne; Bosenberg, Marcus; Brastianos, Priscilla; Cahill, Daniel P; Chen, Qing; Ferguson, Sherise; Forsyth, Peter; Glitza Oliva, Isabella C; Goldberg, Sarah B; Holmen, Sheri L; Knisely, Jonathan P S; Merlino, Glenn; Nguyen, Don X; Pacold, Michael E; Perez-Guijarro, Eva; Smalley, Keiran S M; Tawbi, Hussein A; Wen, Patrick Y; Davies, Michael A; Kluger, Harriet M; Mehnert, Janice M; Hernando, Eva
Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy and targeted therapy. Advances in the basic scientific understanding of melanoma brain metastases, including the role of astrocytes and metabolic adaptations to the brain microenvironment are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in coming years and render novel treatment approaches that might improve the MBM patient outcomes.
PMID: 35912544
ISSN: 1755-148x
CID: 5287832

Dissecting the treatment-naive ecosystem of human melanoma brain metastasis

Biermann, Jana; Melms, Johannes C; Amin, Amit Dipak; Wang, Yiping; Caprio, Lindsay A; Karz, Alcida; Tagore, Somnath; Barrera, Irving; Ibarra-Arellano, Miguel A; Andreatta, Massimo; Fullerton, Benjamin T; Gretarsson, Kristjan H; Sahu, Varun; Mangipudy, Vaibhav S; Nguyen, Trang T T; Nair, Ajay; Rogava, Meri; Ho, Patricia; Koch, Peter D; Banu, Matei; Humala, Nelson; Mahajan, Aayushi; Walsh, Zachary H; Shah, Shivem B; Vaccaro, Daniel H; Caldwell, Blake; Mu, Michael; Wünnemann, Florian; Chazotte, Margot; Berhe, Simon; Luoma, Adrienne M; Driver, Joseph; Ingham, Matthew; Khan, Shaheer A; Rapisuwon, Suthee; Slingluff, Craig L; Eigentler, Thomas; Röcken, Martin; Carvajal, Richard; Atkins, Michael B; Davies, Michael A; Agustinus, Albert; Bakhoum, Samuel F; Azizi, Elham; Siegelin, Markus; Lu, Chao; Carmona, Santiago J; Hibshoosh, Hanina; Ribas, Antoni; Canoll, Peter; Bruce, Jeffrey N; Bi, Wenya Linda; Agrawal, Praveen; Schapiro, Denis; Hernando, Eva; Macosko, Evan Z; Chen, Fei; Schwartz, Gary K; Izar, Benjamin
Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.
PMID: 35803246
ISSN: 1097-4172
CID: 5278412

Melanoma-secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis

Kleffman, Kevin; Levinson, Grace; Rose, Indigo V L; Blumenberg, Lili M; Shadaloey, Sorin A A; Dhabaria, Avantika; Wong, Eitan; Galan-Echevarria, Francisco; Karz, Alcida; Argibay, Diana; Von Itter, Richard; Floristan, Alfredo; Baptiste, Gillian; Eskow, Nicole M; Tranos, James A; Chen, Jenny; Vega Y Saenz de Miera, Eleazar C; Call, Melissa; Rogers, Robert; Jour, George; Wadghiri, Youssef Zaim; Osman, Iman; Li, Yue-Ming; Mathews, Paul; DeMattos, Ronald; Ueberheide, Beatrix; Ruggles, Kelly V; Liddelow, Shane A; Schneider, Robert J; Hernando, Eva
Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma. Our unbiased proteomics analysis of melanoma short-term cultures revealed that proteins implicated in neurodegenerative pathologies are differentially expressed in melanoma cells explanted from brain metastases compared to those derived from extracranial metastases. We showed that melanoma cells require amyloid beta (AB) for growth and survival in the brain parenchyma. Melanoma-secreted AB activates surrounding astrocytes to a pro-metastatic, anti-inflammatory phenotype and prevents phagocytosis of melanoma by microglia. Finally, we demonstrate that pharmacological inhibition of AB decreases brain metastatic burden.
PMID: 35262173
ISSN: 2159-8290
CID: 5183542

A Robust Discovery Platform for the Identification of Novel Mediators of Melanoma Metastasis

Shadaloey, Arman Alberto Sorin; Karz, Alcida; Moubarak, Rana S; Agrawal, Praveen; Levinson, Grace; Kleffman, Kevin; Aristizabal, Orlando; Osman, Iman; Wadghiri, Youssef Z; Hernando, Eva
Metastasis is a complex process, requiring cells to overcome barriers that are only incompletely modeled by in vitro assays. A systematic workflow was established using robust, reproducible in vivo models and standardized methods to identify novel players in melanoma metastasis. This approach allows for data inference at specific experimental stages to precisely characterize a gene's role in metastasis. Models are established by introducing genetically modified melanoma cells via intracardiac, intradermal, or subcutaneous injections into mice, followed by monitoring with serial in vivo imaging. Once preestablished endpoints are reached, primary tumors and/or metastases-bearing organs are harvested and processed for various analyses. Tumor cells can be sorted and subjected to any of several 'omics' platforms, including single-cell RNA sequencing. Organs undergo imaging and immunohistopathological analyses to quantify the overall burden of metastases and map their specific anatomic location. This optimized pipeline, including standardized protocols for engraftment, monitoring, tissue harvesting, processing, and analysis, can be adopted for patient-derived, short-term cultures and established human and murine cell lines of various solid cancer types.
PMID: 35343960
ISSN: 1940-087x
CID: 5200892