Try a new search

Format these results:

Searched for:

person:kc16

in-biosketch:yes

Total Results:

151


Effects of food restriction on expression of place conditioning and biochemical correlates in rat nucleus accumbens

Jung, Caroline; Rabinowitsch, Ariana; Lee, Wei Ting; Zheng, Danielle; de Vaca, Soledad Cabeza; Carr, Kenneth D
RATIONALE: When ad libitum-fed rats undergo cocaine place preference conditioning (CPP) but are switched to food restriction for testing, CPP becomes resistant to extinction and correlates with phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 at Ser845 in nucleus accumbens (NAc) core. OBJECTIVES: This study tested whether food restriction increases persistence of morphine CPP and conditioned place aversions (CPA) induced by LiCl and naloxone-precipitated morphine withdrawal. MATERIALS AND METHODS: Ad libitum-fed rats were conditioned with morphine (6.0 mg/kg, i.p.), LiCl (50.0/75.0 mg/kg, i.p.), or naloxone (1.0 mg/kg, s.c.) 22 h post-morphine (20.0 mg/kg, s.c.). Half of the subjects were then switched to food restriction. Daily testing resumed 3 weeks later, and brains were harvested when one diet group met extinction criterion. Western analyses probed for pSer845-GluA1, pERK1, and pERK2 in NAc. RESULTS: Food restriction increased persistence of morphine CPP and preference scores correlated with pSer845-GluA1 in NAc core and shell. LiCl CPA was curtailed by food restriction, yet pSer845-GluA1 and pERK2 were elevated in NAc core of food-restricted rats. Food restriction increased persistence of naloxone CPA and elevated pSer845-GluA1 in NAc core and shell, and aversion scores were negatively correlated with pERK1 and pERK2 in NAc core. CONCLUSIONS: These results suggest that food restriction prolongs responsiveness to environmental contexts paired with subjective effects of both morphine and morphine withdrawal. A mechanistic scheme, attributing these effects to upregulation of pSer845-GluA1, but subject to override by CPA-specific, pERK2-mediated extinction learning, is explored to accommodate opposite effects of food restriction on LiCl and naloxone CPA.
PMCID:4982816
PMID: 27376947
ISSN: 1432-2072
CID: 2211522

Nucleus Accumbens AMPA Receptor Trafficking Upregulated by Food Restriction: An Unintended Target for Drugs of Abuse and Forbidden Foods

Carr, Kenneth D
There is a high rate of comorbidity between eating disorders and substance abuse, and specific evidence that weight-loss dieting can increase risk for binge pathology, rebound excessive weight gain, and initiation and relapse to drug abuse. The present overview discusses basic science findings indicating that chronic food restriction induces dopamine conservation, compensatory upregulation of D-1 dopamine receptor signaling, and synaptic incorporation of calcium-permeable glutamatergic AMPA receptors in nucleus accumbens. Evidence is presented which indicates that these neuroadaptations account for increased incentive effects of food, drugs, and associated environments during food restriction. In addition, these same neuroadaptations underlie upregulation of sucrose- and psychostimulant-induced trafficking of AMPA receptors to the nucleus accumbens postsynaptic density, which may be a mechanistic basis of enduring maladaptive behavior.
PMCID:4699792
PMID: 26744733
ISSN: 2352-1554
CID: 1901222

Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal

Woods, C A; Guttman, Z R; Huang, D; Kolaric, R A; Rabinowitsch, A I; Jones, K T; de Vaca, S Cabeza; Sclafani, A; Carr, K D
With respect to feeding, insulin is typically thought of as a satiety hormone, acting in the hypothalamus to limit ingestive behavior. However, accumulating evidence suggests that insulin also has the ability to alter dopamine release in the striatum and influence food preferences. With increased access to high calorie foods, Western societies have a high prevalence of obesity, accompanied by insulin insensitivity. Little is known about how insulin is trafficked into the brain following food consumption and whether insulin insensitivity in the periphery is mirrored in the central nervous system. We investigated insulin receptor activation in the ventral striatum of rats receiving water or 16% glucose either orally or intragastrically. We also investigated whether glucose-induced insulin receptor activation was altered in food-restricted (FR) or diet-induced obesity (OB) rat models. Lastly, we examined whether insulin plays a significant role in flavor-nutrient preference learning. Glucose intake stimulated a rapid increase in insulin receptor activity in the ventral striatum of FR and ad libitum (AL) fed rats, but not OB rats. Similarly, both AL and FR, but not OB rats demonstrated significant flavor-nutrient preferences. However AL rats receiving brief inhibition of insulin activity during conditioning failed to acquire a significant flavor-nutrient preference. These findings suggest that impaired insulin receptor activation in the ventral striatum may result in inaccurate valuation of nutritive foods, which could lead to overconsumption of food or the selection of foods that don't accurately meet the body's current physiological needs.
PMCID:5086414
PMID: 26988281
ISSN: 1873-507x
CID: 2032102

Cocaine and HIV infection

Chapter by: Cardozo, Timothy; Shmelkov, Sergey V; Carr, Kenneth; Rotrosen, John, Mateu-Gelabert, Pedro; Friedman, Samuel R
in: Biologics to treat substance use disorders : vaccines, monoclonal antibodies, and enzymes by Montoya, Ivan D (Ed)
Cham : Springer, 2016
pp. 75-103
ISBN: 3319231502
CID: 4842782

Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

Stouffer, Melissa A; Woods, Catherine A; Patel, Jyoti C; Lee, Christian R; Witkovsky, Paul; Bao, Li; Machold, Robert P; Jones, Kymry T; de Vaca, Soledad Cabeza; Reith, Maarten E A; Carr, Kenneth D; Rice, Margaret E
Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.
PMCID:4624275
PMID: 26503322
ISSN: 2041-1723
CID: 1816772

Nucleus accumbens AMPA receptor involvement in cocaine-conditioned place preference under different dietary conditions in rats

Zheng, Danielle; Cabeza de Vaca, Soledad; Jurkowski, Zachary; Carr, Kenneth D
RATIONALE: When ad libitum-fed (AL) rats undergo cocaine place preference conditioning (CPP) but are switched to food restriction (FR) for testing, CPP is enhanced and preference scores correlate with phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 at Ser845 in nucleus accumbens (NAc) core. OBJECTIVES: The present study tested whether a similar association exists in AL rats and whether an inhibitor of Ca2+-permeable AMPARs blocks CPP expression in either diet group. MATERIALS AND METHODS: In experiments 1-3, AL rats were conditioned with cocaine (12.0 mg/kg, i.p.). Three weeks later, CPP was tested daily and brains were harvested after the fifth test. Western analyses were used to probe for levels of AMPA receptors in NAc. In experiment 4, AL rats were conditioned, half were switched to FR for testing, and half in each diet group received NAc core microinjection of 1-naphthylacetyl spermine (NASPM (NASPM) (25.0 mug) prior to each test. RESULTS: In experiment 1, CPP expression in AL rats was associated with elevated pSer845-GluA1, GluA1, and GluA2 in NAc. In experiment 2, the correlation between pSer845-GluA1 and CPP was localized to NAc core. In experiment 3, pSer845-GluA1 following a CPP test was higher in NAc synaptic membranes of FR relative to AL rats. In experiment 4, NASPM blocked CPP expression in both diet groups. CONCLUSIONS: Results support a scheme in which pSer845-GluA1 in NAc core underlies expression of cocaine CPP and does so by stabilizing or trafficking Ca2+-permeable AMPARs to the synaptic membrane. The more robust CPP of FR rats may result from upregulation of stimulus-induced pSer845-GluA1.
PMCID:4465872
PMID: 25589145
ISSN: 0033-3158
CID: 1436372

Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding

Peng, X-X; Lister, A; Rabinowitsch, A; Kolaric, R; Cabeza de Vaca, S; Ziff, E B; Carr, K D
Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for 10 occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-h chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR. Generally, neither a history of sucrose intake nor a terminal bout of sucrose intake affected AMPA receptor abundance in the NAc PSD of AL subjects. Together, these results are consistent with the hypothesis, but the functional contribution of increased synaptic incorporation of AMPA receptors remains to be established.
PMCID:4408271
PMID: 25800309
ISSN: 1873-7544
CID: 1544082

Involvement of nucleus accumbens AMPA receptor trafficking in augmentation of D- amphetamine reward in food-restricted rats

Peng, Xing-Xiang; Cabeza de Vaca, Soledad; Ziff, Edward B; Carr, Kenneth D
RATIONALE: Chronic food restriction (FR) increases behavioral responsiveness to drugs of abuse and associated environments. Pre- and postsynaptic neuroadaptations have been identified in the mesoaccumbens dopamine pathway of FR subjects but the mechanistic basis of increased drug reward magnitude remains unclear. OBJECTIVES: Effects of FR on basal and D-amphetamine-induced trafficking of AMPA receptor subunits to the nucleus accumbens (NAc) postsynaptic density (PSD) were examined, and AMPA receptor involvement in augmentation of D-amphetamine reward was tested. MATERIALS AND METHODS: FR and ad libitum fed (AL) rats were injected with D-amphetamine (2.5 mg/kg, i.p.) or vehicle. Brains were harvested and subcellular fractionation and Western analyses were used to assess AMPA receptor abundance in NAc homogenate and PSD fractions. A follow-up experiment used a curve-shift protocol of intracranial self-stimulation to assess the effect of 1-naphthylacetyl spermine (1-NASPM), a blocker of Ca2+-permeable AMPA receptors, on rewarding effects of D-amphetamine microinjected in NAc shell. RESULTS: FR increased GluA1 in the PSD, and D-amphetamine increased p-Ser845-GluA1, GluA1, GluA2, but not GluA3, with a greater effect in FR than AL rats. D-amphetamine lowered reward thresholds, with greater effects in FR than AL rats, and 1-NASPM selectively reversed the enhancing effect of FR. CONCLUSIONS: Results suggest that FR leads to increased synaptic incorporation of GluA1 homomers to potentiate rewarding effects of appetitive stimuli and, as a maladaptive byproduct, D-amphetamine. The D-amphetamine-induced increase in synaptic p-Ser845-GluA1, GluA1, and GluA2 may contribute to the rewarding effect of D-amphetamine, but may also be a mechanism of synaptic strengthening and behavior modification.
PMCID:4102651
PMID: 24535653
ISSN: 0033-3158
CID: 900402

Effects of time of feeding on psychostimulant reward, conditioned place preference, metabolic hormone levels, and nucleus accumbens biochemical measures in food-restricted rats

Zheng, Danielle; Liu, Shan; Cabeza de Vaca, Soledad; Carr, Kenneth D
RATIONALE: Chronic food restriction (FR) increases rewarding effects of abused drugs and persistence of a cocaine-conditioned place preference (CPP). When there is a single daily meal, circadian rhythms are correspondingly entrained, and pre- and postprandial periods are accompanied by different circulating levels of metabolic hormones that modulate brain dopamine function. OBJECTIVES: The present study assessed whether rewarding effects of d-amphetamine, cocaine, and persistence of cocaine-CPP differ between FR subjects tested in the pre- and postprandial periods. MATERIALS AND METHODS: Rats were stereotaxically implanted with intracerebral microinjection cannulae and an electrode in lateral hypothalamus. Rewarding effects of d-amphetamine and cocaine were assessed using electrical self-stimulation in rats tested 1-4 or 18-21 h after the daily meal. Nonimplanted subjects acquired a cocaine-CPP while ad libitum fed and then were switched to FR and tested for CPP at these same times. RESULTS: Rewarding effects of intranucleus accumbens (NAc) d-amphetamine, intraventricular cocaine, and persistence of cocaine-CPP did not differ between rats tested 18-21 h food-deprived, when ghrelin and insulin levels were at peak and nadir, respectively, and those tested 1-4 h after feeding. Rats that expressed a persistent CPP had elevated levels of p-ERK1, GluA1, and p-Ser845-GluA1 in NAc core, and the latter correlated with CPP expression. CONCLUSIONS: Psychostimulant reward and persistence of CPP in FR rats are unaffected by time of testing relative to the daily meal. Further, NAc biochemical responses previously associated with enhanced drug responsiveness in FR rats are associated with persistent CPP expression.
PMCID:3637844
PMID: 23354537
ISSN: 0033-3158
CID: 315862

Sucrose ingestion induces rapid AMPA receptor trafficking

Tukey, David S; Ferreira, Jainne M; Antoine, Shannon O; D'amour, James A; Ninan, Ipe; Cabeza de Vaca, Soledad; Incontro, Salvatore; Wincott, Charlotte; Horwitz, Julian K; Hartner, Diana T; Guarini, Carlo B; Khatri, Latika; Goffer, Yossef; Xu, Duo; Titcombe, Roseann F; Khatri, Megna; Marzan, Dave S; Mahajan, Shahana S; Wang, Jing; Froemke, Robert C; Carr, Kenneth D; Aoki, Chiye; Ziff, Edward B
The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.
PMCID:3767387
PMID: 23554493
ISSN: 0270-6474
CID: 271462