Try a new search

Format these results:

Searched for:

person:keefed01

in-biosketch:true

Total Results:

235


Telomere Shortening and Fusions: A Link to Aneuploidy in Early Human Embryo Development

Kohlrausch, Fabiana B; Wang, Fang; Chamani, Isaac; Keefe, David L
Importance/UNASSIGNED:It is known that oocytes undergo aging that is caused by exposure to an aged ovarian microenvironment. Telomere length in mouse and bovine oocytes declines with age, and age-associated telomere shortening in oocytes is considered a sign of poor development competency. Women with advanced age undergoing assisted reproductive technologies have poor outcomes because of increasing aneuploidy rates with age. Research has shown that aneuploidy is associated with DNA damage, reactive oxygen species, and telomere dysfunction. Objective/UNASSIGNED:In this review, we focus on the possible relationship between telomere dysfunction and aneuploidy in human early embryo development and several reproductive and perinatal outcomes, discussing the mechanism of aneuploidy caused by telomere shortening and fusion in human embryos. Evidence Acquisition/UNASSIGNED:We reviewed the current literature evidence concerning telomere dysfunction and aneuploidy in early human embryo development. Results/UNASSIGNED:Shorter telomeres in oocytes, leukocytes, and granulosa cells, related to aging in women, were associated with recurrent miscarriage, trisomy 21, ovarian insufficiency, and decreasing chance of in vitro fertilization success. Telomere length and telomerase activity in embryos have been related to the common genomic instability at the cleavage stage of human development. Complications of assisted reproductive technology pregnancies, such as miscarriage, birth defects, preterm births, and intrauterine growth restriction, also might result from telomere shortening as observed in oocytes, polar body, granulosa cells, and embryos. Conclusions and Relevance/UNASSIGNED:Telomere length clearly plays an important role in the development of the embryo and fetus, and the abnormal shortening of telomeres is likely involved in embryo loss during early human development. However, telomere fusion studies have yet to be performed in early human development.
PMID: 34324695
ISSN: 1533-9866
CID: 4949972

Transposon insertion profiling by sequencing (TIPseq) identifies novel LINE-1 insertions in human sperm [Meeting Abstract]

Berteli, T; Wang, F; McKerrow, W; Navarro, P; Fenyo, D; Boeke, J; Kohlrausch, F; Keefe, D
Study question: Do human sperm contain novel LINE-1 insertions and are they affected by paternal age? Summary answer: Human sperm contain novel LINE-1 insertions. Their location or number are not affected by paternal age. What is known already: LINE-1 comprises 17% of the human genome and some LINE-1s are the only autonomous retrotransposons in humans. Retrotransposons influence genomic instability and/or regulation if new retrotransposition events disrupt coding or regulatory regions in the host genome. Demethylation during germ cell development de-represses retrotransposons. Advanced paternal age is associated with genomic instability. Previously we showed that sperm LINE-1 copy number decreases with paternal age. We hypothesize that human sperm exhibit De novo retrotransposition and that sperm from older men contain increased novel LINE-1 insertions. Study design, size, duration: Cross-sectional case-control study with semen samples collected between February to July 2020. Participants/materials, setting, methods: Normospermic sperm samples (n=10; 5 <35 years old and 5 >=45 years old) obtained from consenting men undergoing IVF at NYU Fertility Center were submitted to a novel method, single cell Transposon Insertion Profiling by Sequencing (scTIPseq) to identify and map LINE-1 insertions in human sperm. TIPseqHunter, a custom bioinformatics pipeline, compared the architecture of sperm LINE-1 to known LINE-1 insertions from the European database of human specific LINE-1 (L1Hs) retrotransposon insertions in humans (euL1db). Main results and the role of chance: TIPseq identified 17 novel insertions in sperm, 8 from older (>= 45 years) and 9 in younger men (<35 years). New insertions were mainly intergenic or intronic, including AC007402 (2/10), TMEM163 (2/7), CTTNBP2NL (3/5), AC107023 (3/3), TMC2 (2/19), MacroD2 (2/6), RAB3C (3/4), LINC02664 (1/1), AC079052 (2/3) and AC017091 (4/4). One novel insertion (<35 years old) hits a known regulatory element. Only one sample (>= 45 years old) did not exhibit any new insertion. The location or number of novel insertions did not differ by paternal age. Limitations, reasons for caution: The small sample-size and use of normospermic specimens limit interpretation of paternal age effect on LINE-1. Besides, the novel insertions could be polymorphic sites that have low allele frequency and thus have not yet been described. Wider implications of the findings: This study for the first time reports novel LINE-1 insertions in human sperm, demonstrating that scTIPseq method is a feasible technique, and identifying new contributions to genetic diversity in the human germ line. Further studies are needed to evaluate the impact of these insertions on sperm function
EMBASE:637630355
ISSN: 1460-2350
CID: 5240962

Idiopathic early ovarian aging: Do biomarkers of ageing indicate premenopausal accelerated biological ageing in young women with diminished response to ART? [Meeting Abstract]

Christensen, M W; Keefe, D; Wang, F; Hansen, C; Chamani, I; Sommer, C; Nyegaard, M; Rohde, P; Nielsen, A; Bybjerg-Grauholm, J; Kesmodel, U; Knudsen, U; Kirkegaard, K; Ingerslev, J
Study question: Do young women with idiopathic early ovarian ageing have changes in telomere length and epigenetic age indicating accelerated biological aging? Summary answer: The telomere length and epigenetic age were comparable to those in young women with normal ovarian ageing. What is known already: Increased risk of several health events usually considered to be age-related such as cardiovascular disease, osteoporosis, over-all morbidity and mortality have been associated with premature and early menopause when compared to the risk in women with normal menopausal age suggesting an accelerated general ageing process associated to early ovarian ageing. It is unclear whether the onset of this process may start before menopause. Study design, size, duration: A prospective cohort study. Young women (<= 37 years) having ART at two Danish Public fertility clinics during the period 2016 to 2018 were divided into two groups dependent on their ovarian reserve status: early ovarian ageing (EOA) (N=55) and normal ovarian ageing (NOA)( N=52). Number of oocytes harvested in first and subsequent cycles was used as a marker of ovarian reserve. Blood samples was drawn at time of oocyte retrieval to assess biological age. Participants/materials, setting, methods: EOA was defined as >= 2 IVF cycles with <= 5 harvested oocytes despite sufficient stimulation with FSH and NOA as >=8 oocytes harvested in minimum 1 cycle. Known causes influencing the ovarian reserve (endometriosis, ovarian surgery, etc.) was reason for exclusion. Relative telomere length (qPCR) and epigenetic age acceleration (DNA methylation levels) were measured in white blood cells as markers of accelerated biological ageing. Main results and the role of chance: Relative telomere length was comparable with a mean of 0.46 (+/- sd 0.12) in the EOA group and 0.47 (0.14) in the normal ovarian ageing group (p=0.64). The difference of predicted mean epigenetic age and mean chronological age (i.e. epigenetic age acceleration) was, insignificantly, 0.5 years older in the EOA group when compared to the NOA group( (-1.02 years (2.62) and -1.57 years (2.56), respectively, p=0.27)), but this difference disappeared when adjusting for chronological age. Limitations, reasons for caution: Discrete changes in epigenetic age acceleration may not have been captured as the study only had power to detect an age acceleration of >= 2 years. Wider implications of the findings: By analysis of biomarkers for ageing in whole blood, we did not find any indications of a premenopausal accelerated aging in young women with idiopathic EOA. Further investigations in a similar cohort of premenopausal women is needed to fully elucidate the potential relationship between premenopausal accelerated biological ageing and EOA
EMBASE:637627163
ISSN: 1460-2350
CID: 5240952

Phenotypic continuum between Waardenburg syndrome and idiopathic hypogonadotropic hypogonadism in humans with SOX10 variants

Rojas, Rebecca A; Kutateladze, Anna A; Plummer, Lacey; Stamou, Maria; Keefe, David L; Salnikov, Kathyrn B; Delaney, Angela; Hall, Janet E; Sadreyev, Ruslan; Ji, Fei; Fliers, Eric; Gambosova, Katarina; Quinton, Richard; Merino, Paulina M; Mericq, Veronica; Seminara, Stephanie B; Crowley, William F; Balasubramanian, Ravikumar
PURPOSE/OBJECTIVE:SOX10 variants previously implicated in Waardenburg syndrome (WS) have now been linked to Kallmann syndrome (KS), the anosmic form of idiopathic hypogonadotropic hypogonadism (IHH). We investigated whether SOX10-associated WS and IHH represent elements of a phenotypic continuum within a unifying disorder or if they represent phenotypically distinct allelic disorders. METHODS:Exome sequencing from 1,309 IHH subjects (KS: 632; normosmic idiopathic hypogonadotropic hypogonadism [nIIHH]: 677) were reviewed for SOX10 rare sequence variants (RSVs). The genotypic and phenotypic spectrum of SOX10-related IHH (this study and literature) and SOX10-related WS cases (literature) were reviewed and compared with SOX10-RSV spectrum in gnomAD population. RESULTS:Thirty-seven SOX10-associated IHH cases were identified as follows: current study: 16 KS; 4 nIHH; literature: 16 KS; 1 nIHH. Twenty-three IHH cases (62%; all KS), had ≥1 known WS-associated feature(s). Moreover, five previously reported SOX10-associated WS cases showed IHH-related features. Four SOX10 missense RSVs showed allelic overlap between IHH-ascertained and WS-ascertained cases. The SOX10-HMG domain showed an enrichment of RSVs in disease states versus gnomAD. CONCLUSION/CONCLUSIONS:SOX10 variants contribute to both anosmic (KS) and normosmic (nIHH) forms of IHH. IHH and WS represent SOX10-associated developmental defects that lie along a unifying phenotypic continuum. The SOX10-HMG domain is critical for the pathogenesis of SOX10-related human disorders.
PMID: 33442024
ISSN: 1530-0366
CID: 4747062

The biological basis of female reproductive aging : what happens to the ovaries and uterus as they age?

Chapter by: Shaw, Jacquelyn; Blakemore, Jennifer K; Keefe, David L
in: Optimizing the management of fertility in women over 40 by Nikolaou, Dimitrios; Seifer, David B (Eds)
Cambridge, United Kingdom ; ; New York : Cambridge University Press, 2021
pp. ?-
ISBN: 9781316516829
CID: 5273612

Molecular Features of Polycystic Ovary Syndrome Revealed by Transcriptome Analysis of Oocytes and Cumulus Cells

Li, Jie; Chen, Haixia; Gou, Mo; Tian, Chenglei; Wang, Huasong; Song, Xueru; Keefe, David L; Bai, Xiaohong; Liu, Lin
Polycystic ovary syndrome (PCOS) is typically characterized by a polycystic ovarian morphology, hyperandrogenism, ovulatory dysfunction, and infertility. Furthermore, PCOS patients undergoing ovarian stimulation have more oocytes; however, the poor quality of oocytes leads to lower fertilization and implantation rates, decreased pregnancy rates, and increased miscarriage rates. The complex molecular mechanisms underlying PCOS and the poor quality of oocytes remain to be elucidated. We obtained matched oocytes and cumulus cells (CCs) from PCOS patients, compared them with age-matched controls, and performed RNA sequencing analysis to explore the transcriptional characteristics of their oocytes and CCs. Moreover, we validated our newly confirmed candidate genes for PCOS by immunofluorescence. Unsupervised clustering analysis showed that the overall global gene expression patterns and transposable element (TE) expression profiles of PCOS patients tightly clustered together, clearly distinct from those of controls. Abnormalities in functionally important pathways are found in PCOS oocytes. Notably, genes involved in microtubule processes, TUBB8 and TUBA1C, are overexpressed in PCOS oocytes. The metabolic and oxidative phosphorylation pathways are also dysregulated in both oocytes and CCs from PCOS patients. Moreover, in oocytes, differentially expressed TEs are not uniformly dispersed in human chromosomes. Endogenous retrovirus 1 (ERV1) elements located on chromosomes 2, 3, 4, and 5 are rather highly upregulated. Interestingly, these correlate with the most highly expressed protein-coding genes, including tubulin-associated genes TUBA1C, TUBB8P8, and TUBB8, linking the ERV1 elements to the occurrence of PCOS. Our comprehensive analysis of gene expression in oocytes and CCs, including TE expression, revealed the specific molecular features of PCOS. The aberrantly elevated expression of TUBB8 and TUBA1C and ERV1 provides additional markers for PCOS and may contribute to the compromised oocyte developmental competence in PCOS patients. Our findings may also have implications for treatment strategies to improve oocyte maturation and the pregnancy outcomes for women with PCOS.
PMCID:8450412
PMID: 34552933
ISSN: 2296-634x
CID: 5012632

Posthumous assisted reproduction policies among a cohort of United States' in vitro fertilization clinics

Trawick, Emma; Sampson, Amani; Goldman, Kara; Campo-Engelstein, Lisa; Caplan, Arthur; Keefe, David L; Quinn, Gwendolyn P
Objective/UNASSIGNED:To assess the presence and content of policies toward posthumous assisted reproduction (PAR) using oocytes and embryos among Society for Assisted Reproductive Technology (SART) member clinics in the United States. Design/UNASSIGNED:Cross-sectional questionnaire-based study. Setting/UNASSIGNED:Not applicable. Patients/UNASSIGNED:A total of 62 SART member clinics. Interventions/UNASSIGNED:Questionnaire including multiple choice and open-ended questions. Main Outcome Measures/UNASSIGNED:Descriptive statistics regarding presence and content of policies regarding PAR using oocytes and embryos, consent document content regarding oocyte and embryo disposition, and eligibility of minors and those with terminal illness for fertility preservation. Results/UNASSIGNED:Of the 332 clinics contacted, 62 responded (response rate 18.7%). Respondents were distributed across the United States, and average volume of in vitro fertilization (IVF) cycles per year ranged from <250 to >1,500, but 71.2% (n = 42) reported a volume of <500. Nearly one-half (42.4%, n = 25) of clinics surveyed reported participating in any cases of posthumous reproduction during the past 5 years, and 6.8% (n = 4) reported participation in >5 cases. Participation in cases of posthumous reproduction was not significantly associated with practice type or IVF cycle volume among those surveyed. Only 59.6% (n = 34) of clinics surveyed had written policies regarding PAR using oocytes or embryos, whereas 36.8% (n = 21) reported they did not have a policy. Practice type, IVF cycle volume, fertility preservation volume, and prior participation in cases of PAR were not significantly associated with the presence of a policy among respondent clinics. Of those with a policy, 55.9% (n = 19) reported they had used that policy, 59.1% (n = 13) without a policy reported they had considered adopting one, and 63.6% (n = 14) reported they had received a request for PAR services. Only 47.2% (n = 25) of clinics surveyed specified that patients not expected to survive to use oocytes due to terminal illness are eligible for oocyte cryopreservation, whereas 45.3% (n = 24) did not specify. Conclusions/UNASSIGNED:Respondent clinics reported receiving an increasing number of requests for PAR services, but many also lacked PAR policies. Those with policies did not always follow ASRM recommendations. Given the low response rate, these data cannot be interpreted as representative of SART clinics overall. As PAR cases become more common, however, this study highlights poor reporting of PAR and institutional policies toward PAR, suggesting that SART clinics may not be equipped to systematically manage the complexities of PAR.
PMCID:8244314
PMID: 34223220
ISSN: 2666-3341
CID: 4932912

TCF12 haploinsufficiency causes autosomal dominant Kallmann syndrome and reveals network-level interactions between causal loci

Davis, Erica E; Balasubramanian, Ravikumar; Kupchinsky, Zachary A; Keefe, David L; Plummer, Lacey; Khan, Kamal; Meczekalski, Blazej; Heath, Karen E; Lopez-Gonzalez, Vanesa; Ballesta-Martinez, Mary J; Margabanthu, Gomathi; Price, Susan; Greening, James; Brauner, Raja; Valenzuela, Irene; Cusco, Ivon; Fernandez-Alvarez, Paula; Wierman, Margaret E; Li, Taibo; Lage, Kasper; Barroso, Priscila Sales; Chan, Yee-Ming; Crowley, William F; Katsanis, Nicholas
Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD). Here we report thirteen families (twelve autosomal dominant, and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome; KS) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12; and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD; highlight the genetic links between craniofacial patterning and GnRH dysfunction; and begin to assemble the functional network that regulates the development of the GnRH axis.
PMID: 32620954
ISSN: 1460-2083
CID: 4518222

Telomere erosion as a placental clock: From placental pathologies to adverse pregnancy outcomes

Kohlrausch, Fabiana B; Keefe, David L
The placenta provides nutritional and gas exchange between fetus and mother. Early in pregnancy, placental trophoblasts proliferate rapidly and invade aggressively. As pregnancy progresses, placental cells begin to age. Indeed, pregnancy itself has a tightly regulated duration, determined in large part by placental lifespan. Late in pregnancy, placental cells reach a senescent apoptotic state, activated by a number of intrinsic and extrinsic factors, including oxidative stress (OS), and DNA damage. Pregnancy complications, stillbirths and neonatal deaths have been related to OS and abnormal placental aging. Telomeres, the protective nucleoprotein structures at the ends of linear chromosomes, shorten both from cell replication and from exposure to OS. When telomeres become critically short they trigger cell cycle arrest and eventually cell death. Telomere attrition thus provide an intrinsic mechanism to explain tissue senescence and aging. Mounting evidence suggests that senescence of placental and fetal membrane cells results from telomere attrition. We review the studies that have addressed the role of telomere length (TL) in placentas from normal and complicated pregnancies, including pre-eclampsia, intrauterine growth restriction, gestational diabetes, and stillbirth. To date studies have uncovered associations between TL and a number of obstetrical complications. Future research is needed to determine whether these associations are causative, i.e. whether these clinical conditions result from telomere dysfunction, and whether particular features of telomeres, e.g. mean or shortest length, etc. could serve as clinically useful biomarkers of placental health.
PMID: 32792055
ISSN: 1532-3102
CID: 4556702

Characteristics and Outcomes of 241 Births to Women With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection at Five New York City Medical Centers

Khoury, Rasha; Bernstein, Peter S; Debolt, Chelsea; Stone, Joanne; Sutton, Desmond M; Simpson, Lynn L; Limaye, Meghana A; Roman, Ashley S; Fazzari, Melissa; Penfield, Christina A; Ferrara, Lauren; Lambert, Calvin; Nathan, Lisa; Wright, Rodney; Bianco, Angela; Wagner, Brian; Goffman, Dena; Gyamfi-Bannerman, Cynthia; Schweizer, William E; Avila, Karina; Khaksari, Bijan; Proehl, Meghan; Heitor, Fabiano; Monro, Johanna; Keefe, David L; DʼAlton, Mary E; Brodman, Michael; Makhija, Sharmila K; Dolan, Siobhan M
OBJECTIVE:To describe the characteristics and birth outcomes of women with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as community spread in New York City was detected in March 2020. METHODS:We performed a prospective cohort study of pregnant women with laboratory-confirmed SARS-CoV-2 infection who gave birth from March 13 to April 12, 2020, identified at five New York City medical centers. Demographic and clinical data from delivery hospitalization records were collected, and follow-up was completed on April 20, 2020. RESULTS:Among this cohort (241 women), using evolving criteria for testing, 61.4% of women were asymptomatic for coronavirus disease 2019 (COVID-19) at the time of admission. Throughout the delivery hospitalization, 26.5% of women met World Health Organization criteria for mild COVID-19, 26.1% for severe, and 5% for critical. Cesarean birth was the mode of delivery for 52.4% of women with severe and 91.7% with critical COVID-19. The singleton preterm birth rate was 14.6%. Admission to the intensive care unit was reported for 17 women (7.1%), and nine (3.7%) were intubated during their delivery hospitalization. There were no maternal deaths. Body mass index (BMI) 30 or higher was associated with COVID-19 severity (P=.001). Nearly all newborns tested negative for SARS-CoV-2 infection immediately after birth (97.5%). CONCLUSION/CONCLUSIONS:During the first month of the SARS-CoV-2 outbreak in New York City and with evolving testing criteria, most women with laboratory-confirmed infection admitted for delivery did not have symptoms of COVID-19. Almost one third of women who were asymptomatic on admission became symptomatic during their delivery hospitalization. Obesity was associated with COVID-19 severity. Disease severity was associated with higher rates of cesarean and preterm birth.
PMID: 32555034
ISSN: 1873-233x
CID: 4485172