Try a new search

Format these results:

Searched for:

person:kims41

in-biosketch:yes

Total Results:

34


Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice

Lubkin, Ashira; Lee, Warren L; Alonzo, Francis; Wang, Changsen; Aligo, Jason; Keller, Matthew; Girgis, Natasha M; Reyes-Robles, Tamara; Chan, Rita; O'Malley, Aidan; Buckley, Peter; Vozhilla, Nikollaq; Vasquez, Marilyn T; Su, Johnny; Sugiyama, Michael; Yeung, Stephen T; Coffre, Maryaline; Bajwa, Sofia; Chen, Eric; Martin, Patricia; Kim, Sang Y; Loomis, Cynthia; Worthen, G Scott; Shopsin, Bo; Khanna, Kamal M; Weinstock, Daniel; Lynch, Anthony Simon; Koralov, Sergei B; Loke, P'ng; Cadwell, Ken; Torres, Victor J
The pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice. The Duffy antigen receptor for chemokines (DARC) on endothelial cells, rather than leukocytes or erythrocytes, is the critical target for lethality. Consistent with this, LukED and HlgAB injure primary human endothelial cells in a DARC-dependent manner, and mice with DARC-deficient endothelial cells are resistant to toxin-mediated lethality. During bloodstream infection in mice, DARC targeting by S. aureus causes increased tissue damage, organ dysfunction, and host death. The potential for S. aureus leukocidins to manipulate vascular integrity highlights the importance of these virulence factors.
PMID: 30799265
ISSN: 1934-6069
CID: 3721612

Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence

Liao, Yi; Chang, Hung-Chi; Liang, Feng-Xia; Chung, Pei-Jung; Wei, Yuan; Nguyen, Tuan-Phi; Zhou, Ge; Talebian, Sheeva; Krey, Lewis C; Deng, Fang-Ming; Wong, Tak-Wah; Chicote, Javier U; Grifo, James A; Keefe, David L; Shapiro, Ellen; Lepor, Herbert; Wu, Xue-Ru; DeSalle, Robert; Garcia-España, Antonio; Kim, Sang Yong; Sun, Tung-Tien
Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique 2D-crystals of 16-nm particles ("urothelial plaques") covering the apical urothelial surface. Although uroplakins are highly expressed only in mouse urothelium and are often referred to as being urothelium-specific, they are also expressed in several nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms and ovary/oocytes. In oocytes, uroplakins co-localize with CD9 on cell surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine-phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs' fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require 2D-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form 2D- crystalline plaques during mammalian divergence enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, in order to protect/modify the apical surface of the modern-day mammalian urothelium.
PMID: 30303751
ISSN: 1939-4586
CID: 3335002

Nascent Induced Pluripotent Stem Cells Efficiently Generate Entirely iPSC-Derived Mice while Expressing Differentiation-Associated Genes

Amlani, Bhishma; Liu, Yiyuan; Chen, Taotao; Ee, Ly-Sha; Lopez, Peter; Heguy, Adriana; Apostolou, Effie; Kim, Sang Yong; Stadtfeld, Matthias
The ability of induced pluripotent stem cells (iPSCs) to differentiate into all adult cell types makes them attractive for research and regenerative medicine; however, it remains unknown when and how this capacity is established. We characterized the acquisition of developmental pluripotency in a suitable reprogramming system to show that iPSCs prior to passaging become capable of generating all tissues upon injection into preimplantation embryos. The developmental potential of nascent iPSCs is comparable to or even surpasses that of established pluripotent cells. Further functional assays and genome-wide molecular analyses suggest that cells acquiring developmental pluripotency exhibit a unique combination of properties that distinguish them from canonical naive and primed pluripotency states. These include reduced clonal self-renewal potential and the elevated expression of differentiation-associated transcriptional regulators. Our observations close a gap in the understanding of induced pluripotency and provide an improved roadmap of cellular reprogramming with ramifications for the use of iPSCs.
PMID: 29420174
ISSN: 2211-1247
CID: 2947822

The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids

Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S
CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.
PMID: 29262351
ISSN: 1097-4180
CID: 4356772

Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells

Choi, Jiho; Huebner, Aaron J; Clement, Kendell; Walsh, Ryan M; Savol, Andrej; Lin, Kaixuan; Gu, Hongcang; Di Stefano, Bruno; Brumbaugh, Justin; Kim, Sang-Yong; Sharif, Jafar; Rose, Christopher M; Mohammad, Arman; Odajima, Junko; Charron, Jean; Shioda, Toshi; Gnirke, Andreas; Gygi, Steven; Koseki, Haruhiko; Sadreyev, Ruslan I; Xiao, Andrew; Meissner, Alexander; Hochedlinger, Konrad
Concomitant activation of the Wnt pathway and suppression of Mapk signalling by two small molecule inhibitors (2i) in the presence of leukaemia inhibitory factor (LIF) (hereafter termed 2i/L) induces a naive state in mouse embryonic stem (ES) cells that resembles the inner cell mass (ICM) of the pre-implantation embryo. Since the ICM exists only transiently in vivo, it remains unclear how sustained propagation of naive ES cells in vitro affects their stability and functionality. Here we show that prolonged culture of male mouse ES cells in 2i/L results in irreversible epigenetic and genomic changes that impair their developmental potential. Furthermore, we find that female ES cells cultured in conventional serum plus LIF medium phenocopy male ES cells cultured in 2i/L. Mechanistically, we demonstrate that the inhibition of Mek1/2 is predominantly responsible for these effects, in part through the downregulation of DNA methyltransferases and their cofactors. Finally, we show that replacement of the Mek1/2 inhibitor with a Src inhibitor preserves the epigenetic and genomic integrity as well as the developmental potential of ES cells. Taken together, our data suggest that, although short-term suppression of Mek1/2 in ES cells helps to maintain an ICM-like epigenetic state, prolonged suppression results in irreversible changes that compromise their developmental potential.
PMCID:5905676
PMID: 28746311
ISSN: 1476-4687
CID: 2654332

Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells

Choi, Yong Jin; Lin, Chao-Po; Risso, Davide; Chen, Sean; Kim, Thomas Aquinas; Tan, Meng How; Li, Jin B; Wu, Yalei; Chen, Caifu; Xuan, Zhenyu; Macfarlan, Todd; Peng, Weiqun; Lloyd, K C Kent; Kim, Sang Yong; Speed, Terence P; He, Lin
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) efficiently generate all embryonic cell lineages, but rarely generate extra-embryonic cell types. We show that microRNA miR-34a deficiency expands the developmental potential of mouse pluripotent stem cells to yield both embryonic and extra-embryonic lineages and strongly induce MuERV-L (MERVL) endogenous retroviruses, similar to what is seen with totipotent 2-cell blastomeres. miR-34a restricts the acquisition of expanded cell fate potential in pluripotent stem cells, and represses MERVL expression through transcriptional regulation, at least in part, by targeting the transcription factor Gata2. Altogether, our studies reveal a complex molecular network that defines and restricts pluripotent developmental potential, raising the tantalizing possibility of culturing bi-potential ESCs to explore the molecular basis for totipotency.
PMCID:6138252
PMID: 28082412
ISSN: 1095-9203
CID: 2431192

The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells

Wang, Qiong; Zou, Yilong; Nowotschin, Sonja; Kim, Sang Yong; Li, Qing V; Soh, Chew-Li; Su, Jie; Zhang, Chao; Shu, Weiping; Xi, Qiaoran; Huangfu, Danwei; Hadjantonakis, Anna-Katerina; Massague, Joan
In this study, we outline a regulatory network that involves the p53 tumor suppressor family and the Wnt pathway acting together with the TGF-beta pathway in mesendodermal differentiation of mouse and human embryonic stem cells. Knockout of all three members, p53, p63, and p73, shows that the p53 family is essential for mesendoderm specification during exit from pluripotency in embryos and in culture. Wnt3 and its receptor Fzd1 are direct p53 family target genes in this context, and induction of Wnt signaling by p53 is critical for activation of mesendodermal differentiation genes. Globally, Wnt3-activated Tcf3 and nodal-activated Smad2/3 transcription factors depend on each other for co-occupancy of target enhancers associated with key differentiation loci. Our results therefore highlight an unanticipated role for p53 family proteins in a regulatory network that integrates essential Wnt-Tcf and nodal-Smad inputs in a selective and interdependent way to drive mesendodermal differentiation of pluripotent cells.
PMCID:5218926
PMID: 27889317
ISSN: 1875-9777
CID: 2329142

A p53-Wnt-Nodal network driving mesendoderm specification [Meeting Abstract]

Wang, Q; Zou, Y; Nowotschin, S; Kim, SY; Li, Q; Soh, CL; Xi, Q; Zhang, C; Su, J; Huangfu, D; Hadjantonakis, AK; Massague, J
ISI:000388119200559
ISSN: 1557-7422
CID: 2360172

Co-repressor CBFA2T2 regulates pluripotency and germline development

Tu, Shengjiang; Narendra, Varun; Yamaji, Masashi; Vidal, Simon E; Rojas, Luis Alejandro; Wang, Xiaoshi; Kim, Sang Yong; Garcia, Benjamin A; Tuschl, Thomas; Stadtfeld, Matthias; Reinberg, Danny
Developmental specification of germ cells lies at the heart of inheritance, as germ cells contain all of the genetic and epigenetic information transmitted between generations. The critical developmental event distinguishing germline from somatic lineages is the differentiation of primordial germ cells (PGCs), precursors of sex-specific gametes that produce an entire organism upon fertilization. Germ cells toggle between uni- and pluripotent states as they exhibit their own 'latent' form of pluripotency. For example, PGCs express a number of transcription factors in common with embryonic stem (ES) cells, including OCT4 (encoded by Pou5f1), SOX2, NANOG and PRDM14 (refs 2, 3, 4). A biochemical mechanism by which these transcription factors converge on chromatin to produce the dramatic rearrangements underlying ES-cell- and PGC-specific transcriptional programs remains poorly understood. Here we identify a novel co-repressor protein, CBFA2T2, that regulates pluripotency and germline specification in mice. Cbfa2t2-/- mice display severe defects in PGC maturation and epigenetic reprogramming. CBFA2T2 forms a biochemical complex with PRDM14, a germline-specific transcription factor. Mechanistically, CBFA2T2 oligomerizes to form a scaffold upon which PRDM14 and OCT4 are stabilized on chromatin. Thus, in contrast to the traditional 'passenger' role of a co-repressor, CBFA2T2 functions synergistically with transcription factors at the crossroads of the fundamental developmental plasticity between uni- and pluripotency.
PMCID:4911307
PMID: 27281218
ISSN: 1476-4687
CID: 2136522

Conditional knockout of Foxc2 gene in kidney: efficient generation of conditional alleles of single-exon gene by double-selection system

Motojima, Masaru; Ogiwara, Sanae; Matsusaka, Taiji; Kim, Sang Yong; Sagawa, Nobuho; Abe, Koichiro; Ohtsuka, Masato
Foxc2 is a single-exon gene and a key regulator in development of multiple organs, including kidney. To avoid embryonic lethality of conventional Foxc2 knockout mice, we conditionally deleted Foxc2 in kidneys. Conditional targeting of a single-exon gene involves the large floxed gene segment spanning from promoter region to coding region to avoid functional disruption of the gene by the insertion of a loxP site. Therefore, in ES cell clones surviving a conventional single-selection, e.g., neomycin-resistant gene (neo) alone, homologous recombination between the long floxed segment and target genome results in a high incidence of having only one loxP site adjacent to the selection marker. To avoid this limitation, we employed a double-selection system. We generated a Foxc2 targeting construct in which a floxed segment contained 4.6 kb mouse genome and two different selection marker genes, zeocin-resistant gene and neo, that were placed adjacent to each loxP site. After double-selection by zeocin and neomycin, 72 surviving clones were screened that yielded three correctly targeted clones. After floxed Foxc2 mice were generated by tetraploid complementation, we removed the two selection marker genes by a simultaneous-single microinjection of expression vectors for Dre and Flp recombinases into in vitro-fertilized eggs. To delete Foxc2 in mouse kidneys, floxed Foxc2 mice were mated with Pax2-Cre mice. Newborn Pax2-Cre; Foxc2loxP/loxP mice showed kidney hypoplasia and glomerular cysts. These results indicate the feasibility of generating floxed Foxc2 mice by double-selection system and simultaneous removal of selection markers with a single microinjection.
PMID: 26542959
ISSN: 1432-1777
CID: 1826032