Try a new search

Format these results:

Searched for:

person:lcc4

in-biosketch:yes

Total Results:

255


Exposure to Ambient Particulate Matter during Specific Gestational Periods Produces Adverse Obstetric Consequences in Mice

Blum, Jason L; Chen, Lung-Chi; Zelikoff, Judith T
BACKGROUND: Epidemiological studies associate inhalation of fine-sized particulate matter (PM2.5) during pregnancy with preterm birth (PTB) and low birth weight (LBW) but disagree over which time frames are most sensitive, or if effects are cumulative. OBJECTIVES: Our objective was to provide experimental plausibility for epidemiological observations by testing the hypothesis that exposure to PM2.5 during discrete periods of pregnancy results in PTB and LBW. METHODS: For the first study, timed-pregnant B6C3F1 mice were exposed to concentrated ambient PM2.5 (CAPs) or filtered air (FA) throughout pregnancy [6 h/d from gestational day (GD) 0.5 through GD16.5]. A follow-up study examined the effects of CAPs exposure during discrete gestational periods (1: GD0.5-5.5; 2: GD6.5-14.5; 3: GD14.5-16.5; 4: GD0.5-16.5) aligning to milestones during human development. RESULTS: In the first experiment, exposure to 160 mug CAPs/m3 throughout pregnancy decreased gestational term by 0.5 d ( approximately 1.1 wk decrease for humans) and birth weight by 11.4% compared with FA. The follow-up experiment investigated timing of CAPs exposure (mean concentrations at 178, 193, 171, and 173 mug/m3 for periods 1-4, respectively). Pregnancy was significantly shortened (vs. FA) by approximately 0.4d when exposure occurred during gestational periods 2 and 4, and by approximately 0.5d if exposure occurred during period 3. Exposure during periods 1, 2, and 4 reduced birth weight by approximately 10% compared with FA, and placental weight was reduced ( approximately 8%) on GD17.5 if exposure occurred only during period 3. CONCLUSIONS: Adverse PM2.5-induced outcomes such as PTB and LBW are dependent upon the periods of maternal exposure. The results of these experimental studies could contribute significantly to air pollution policy decisions in the future. https://doi.org/10.1289/EHP1029.
PMCID:5744697
PMID: 28893721
ISSN: 1552-9924
CID: 2701572

Exposure to Concentrated Ambient PM2.5 Shortens Lifespan and Induces Inflammation-Associated Signaling and Oxidative Stress in Drosophila

Wang, Xiaoke; Chen, Minjie; Zhong, Mianhua; Hu, Ziying; Qiu, Lianglin; Rajagopalan, Sanjay; Fossett, Nancy G; Chen, Lung-Chi; Ying, Zhekang
Exposure to ambient PM2.5 is associated with human premature mortality. However, it has not yet been toxicologically replicated, likely due to the lack of suitable animal models. Drosophila is frequently used in longevity research due to many incomparable merits. The present study aims to validate Drosophila models for PM2.5 toxicity study through characterizing their biological responses to exposure to concentrated ambient PM2.5 (CAP). The survivorship curve demonstrated that exposure to CAP markedly reduced lifespan of Drosophila. This antilongevity effect of CAP exposure was observed in both male and female Drosophila, and by comparison, the male was more sensitive [50% survivals: 20 and 48 days, CAP- and filtered air (FA)-exposed males, respectively; 21 and 40 days, CAP- and FA-exposed females, respectively]. Similar to its putative pathogenesis in humans, CAP exposure-induced premature mortality in Drosophila was also coincided with activation of pro-inflammatory signaling pathways including Jak, Jnk, and Nf-kappab and increased systemic oxidative stress. Furthermore, like in humans and mammals, exposure to CAP significantly increased whole-body and circulating glucose levels and increased mRNA expression of Ilp2 and Ilp5, indicating that CAP exposure induces dysregulated insulin signaling in Drosophila. Similar to effects on humans ,: exposure to CAP leads to premature mortality likely through induction of inflammation-associated signaling, oxidative stress, and metabolic abnormality in Drosophila, strongly supporting that it can be a useful model organism for PM2.5 toxicity study.
PMCID:5837417
PMID: 28069988
ISSN: 1096-0929
CID: 2424822

Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure

Caraher, Erin J; Kwon, Sophia; Haider, Syed H; Crowley, George; Lee, Audrey; Ebrahim, Minah; Zhang, Liqun; Chen, Lung-Chi; Gordon, Terry; Liu, Mengling; Prezant, David J; Schmidt, Ann Marie; Nolan, Anna
World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)>/=97pg/mL, CRP>/=2.4mg/L, and MMP-9
PMCID:5604982
PMID: 28926576
ISSN: 1932-6203
CID: 2706992

Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells

Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to anickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
PMCID:5079680
PMID: 27467530
ISSN: 1554-8635
CID: 2191672

Improving Knowledge about Children's Environmental Health in Northwest China

Niu, Jingping; Qu, Qingshan; Li, Juansheng; Liu, Xingrong; Zhang, Benzhong; Li, Zhilan; Ding, Guowu; Sun, Yingbiao; Shi, Yanrong; Wan, Yaxiong; Hu, Xiaobin; Chen, Lung-Chi; Mendelsohn, Alan; Chen, Yu; Trasande, Leonardo
The main purpose of this study was to identify policy maker opinions and attitudes towards children's environmental health (CEH), potential barriers to child-specific protective legislation and implementation in northwest China, and evaluate knowledge and attitudes about CEH before and after an educational conference. We conducted seventy-two interviews with regional officials, researchers and non-governmental organization representatives from five provinces, and surveyed participants (forty-seven) before and after an educational conference in northwest China about CEH. Interviews identified general consensus among participants of the adverse effects of air pollution on children, yet few participants knew of policies to protect them. Barriers identified included limited funding and enforcement, weak regional governments and absence of child-specific policy-making. After the conference, substantially greater self-efficacy was identified for lead, mercury, air pollution and polychlorinated biphenyls (+0.57-0.72 on a 1-5 Likert scale, p = 0.002-0.013), and the scientific knowledge for the role of environment in children's health (+0.58, p = 0.015), and health care provider control (+0.52, p = 0.025) were rated more strongly. We conclude that policy makers in Northwest China appreciate that children are uniquely vulnerable, though additional regulations are needed to account for that vulnerability. Further research should examine effectiveness of the intervention on a larger scale and scope, and evaluate the usefulness of such interventions in translating research into improved care/reduced exposure to environmental hazards.
PMCID:4730471
PMID: 26712775
ISSN: 1660-4601
CID: 1894472

Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation

Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-Wen; Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N; Chen, Lung-Chi; Tang, Moon-Shong
Second-hand smoke (SHS) is associated with 20-30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers.
PMCID:4741761
PMID: 26431382
ISSN: 1949-2553
CID: 1790072

Malignant human cell transformation of Marcellus Shale gas drilling flow back water

Yao, Yixin; Chen, Tingting; Shen, Steven S; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max
The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining.
PMCID:4698968
PMID: 26210350
ISSN: 1096-0333
CID: 1698402

Air quality in New York City hookah bars

Zhou, Sherry; Weitzman, Michael; Vilcassim, Ruzmyn; Wilson, Jennifer; Legrand, Nina; Saunders, Eric; Travers, Mark; Chen, Lung-Chi; Peltier, Richard; Gordon, Terry
BACKGROUND: Hookahs are increasingly being used in the USA and elsewhere. Despite the popularity of hookah bars, there is a paucity of research assessing the health effects of hookah smoke, and although New York City (NYC) bans indoor tobacco smoking, hookah lounges claim that they only use herbal products without tobacco. This study investigated levels of multiple indices of indoor air pollution in hookah bars in NYC. METHODS: Air samples were collected in 8 hookah bars in NYC. Along with venue characteristics, real-time measurements of fine particulate matter (PM2.5), black carbon (BC), and carbon monoxide (CO), and total gravimetric PM, elemental carbon (EC), organic carbon (OC), and nicotine were collected in 1-2 hour sessions. RESULTS: Overall, levels of indoor air pollution increased with increasing numbers of active hookahs smoked. The mean (SD) real time PM2.5 level was 1179.9 (939.4) microg/m(3), whereas the filter-based total PM mean was 691.3 (592.6) microg/m(3). The mean real time BC level was 4.1 (2.3) microg/m(3), OC was 237.9 (112.3) microg/m(3), and CO was 32 (16) ppm. Airborne nicotine was present in all studied hookah bars (4.2 (1.5) microg/m(3)). CONCLUSIONS: These results demonstrate that despite the ban on smoking tobacco products, at the very least, some NYC hookah bars are serving tobacco-based hookahs, and have elevated concentrations of indoor air pollutants that may present a health threat to visitors and employees. Therefore, there is an urgent need for better air quality monitoring in such establishments and policies to combat this emerging public health threat.
PMCID:4390442
PMID: 25232045
ISSN: 1468-3318
CID: 1789142

Repeated measures of inflammation, blood pressure, and heart rate variability associated with traffic exposures in healthy adults

Mirowsky, Jaime E; Peltier, Richard E; Lippmann, Morton; Thurston, George; Chen, Lung-Chi; Neas, Lucas; Diaz-Sanchez, David; Laumbach, Robert; Carter, Jacqueline D; Gordon, Terry
BACKGROUND: Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic locations while looking at a vast array of health endpoints in the same population. We evaluated inflammatory markers, heart rate variability (HRV), blood pressure, exhaled nitric oxide, and lung function in healthy participants after exposures to varying mixtures of traffic pollutants. METHODS: A repeated-measures, crossover study design was used in which 23 healthy, non-smoking adults had clinical cardiopulmonary and systemic inflammatory measurements taken prior to, immediately after, and 24 hours after intermittent walking for two hours in the summer months along three diverse roadways having unique emission characteristics. Measurements of PM2.5, PM10, black carbon (BC), elemental carbon (EC), and organic carbon (OC) were collected. Mixed effect models were used to assess changes in health effects associated with these specific pollutant classes. RESULTS: Minimal associations were observed with lung function measurements and the pollutants measured. Small decreases in BP measurements and rMSSD, and increases in IL-1beta and the low frequency to high frequency ratio measured in HRV, were observed with increasing concentrations of PM2.5 EC. CONCLUSIONS: Small, acute changes in cardiovascular and inflammation-related effects of microenvironmental exposures to traffic-related air pollution were observed in a group of healthy young adults. The associations were most profound with the diesel-source EC.
PMCID:4537534
PMID: 26276052
ISSN: 1476-069x
CID: 1721492

Health effects of World Trade Center (WTC) Dust: An unprecedented disaster's inadequate risk management

Lippmann, Morton; Cohen, Mitchell D; Chen, Lung-Chi
The World Trade Center (WTC) twin towers in New York City collapsed on 9/11/2001, converting much of the buildings' huge masses into dense dust clouds of particles that settled on the streets and within buildings throughout Lower Manhattan. About 80-90% of the settled WTC Dust, ranging in particle size from approximately 2.5 mum upward, was a highly alkaline mixture of crushed concrete, gypsum, and synthetic vitreous fibers (SVFs) that was readily resuspendable by physical disturbance and low-velocity air currents. High concentrations of coarse and supercoarse WTC Dust were inhaled and deposited in the conductive airways in the head and lungs, and subsequently swallowed, causing both physical and chemical irritation to the respiratory and gastroesophageal epithelia. There were both acute and chronic adverse health effects in rescue/recovery workers; cleanup workers; residents; and office workers, especially in those lacking effective personal respiratory protective equipment. The numerous health effects in these people were not those associated with the monitored PM2.5 toxicants, which were present at low concentrations, that is, asbestos fibers, transition and heavy metals, polyaromatic hydrocarbons or PAHs, and dioxins. Attention was never directed at the very high concentrations of the larger-sized and highly alkaline WTC Dust particles that, in retrospect, contained the more likely causal toxicants. Unfortunately, the initial focus of the air quality monitoring and guidance on exposure prevention programs on low-concentration components was never revised. Public agencies need to be better prepared to provide reliable guidance to the public on more appropriate means of exposure assessment, risk assessment, and preventive measures.
PMCID:4686342
PMID: 26058443
ISSN: 1547-6898
CID: 1626362