Try a new search

Format these results:

Searched for:

person:lees40

in-biosketch:yes

Total Results:

39


Implicit emotion perception in schizophrenia

Tremeau, Fabien; Antonius, Daniel; Todorov, Alexander; Rebani, Yasmina; Ferrari, Kelsey; Lee, Sang Han; Calderone, Daniel; Nolan, Karen A; Butler, Pamela; Malaspina, Dolores; Javitt, Daniel C
Explicit but not implicit facial emotion perception has been shown to be impaired in schizophrenia. In this study, we used newly developed technology in social neuroscience to examine implicit emotion processing. It has been shown that when people look at faces, they automatically infer social traits, and these trait judgments rely heavily on facial features and subtle emotion expressions even with neutral faces. Eighty-one individuals with schizophrenia or schizoaffective disorder and 62 control subjects completed a computer task with 30 well-characterized neutral faces. They rated each face on 10 trait judgments: attractive, mean, trustworthy, intelligent, dominant, fun, sociable, aggressive, emotionally stable and weird. The degree to which trait ratings were predicted by objectively-measured subtle emotion expressions served as a measure of implicit emotion processing. Explicit emotion recognition was also examined. Trait ratings were significantly predicted by subtle facial emotional expressions in controls and patients. However, impairment in the implicit emotion perception of fear, happiness, anger and surprise was found in patients. Moreover, these deficits were associated with poorer everyday problem-solving skills and were relatively independent of explicit emotion recognition. Implicit emotion processing is impaired in patients with schizophrenia or schizoaffective disorder. Deficits in implicit and explicit emotion perception independently contribute to the patients' poor daily life skills. More research is needed to fully understand the role of implicit and explicit processes in the functional deficits of patients, in order to develop targeted and useful remediation interventions.
PMID: 26473695
ISSN: 1879-1379
CID: 1803782

Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD)

Alldred, Melissa J; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D
Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
PMCID:4297601
PMID: 25031177
ISSN: 1863-2653
CID: 1071192

Reduction of beta-amyloid and gamma-secretase by calorie restriction in female Tg2576 mice

Schafer, Marissa J; Alldred, Melissa J; Lee, Sang Han; Calhoun, Michael E; Petkova, Eva; Mathews, Paul M; Ginsberg, Stephen D
Research indicates that female risk of developing Alzheimer's disease (AD) is greater than that of males. Moderate reduction of calorie intake, known as calorie restriction (CR), reduces pathology in AD mouse models and is a potentially translatable prevention measure for individuals at-risk for AD, as well as an important tool for understanding how the brain endogenously attenuates age-related pathology. Whether sex influences the response to CR remains unknown. In this study, we assessed the effect of CR on beta-amyloid peptide (Abeta) pathology and hippocampal CA1 neuron specific gene expression in the Tg2576 mouse model of cerebral amyloidosis. Relative to ad libitum (AL) feeding, CR feeding significantly reduced hippocampal Abeta burden in 15-month-old female, but not age-matched male, Tg2576 mice. Sustained CR also significantly reduced expression of presenilin enhancer 2 (Psenen) and presenilin 1, components of the gamma-secretase complex, in Tg2576 females. These results indicate that long-term CR significantly reduces age-dependent female Tg2576 Abeta pathology, which is likely to involve CR-mediated reductions in gamma-secretase-dependent amyloid precursor protein (APP) metabolism.
PMCID:4346433
PMID: 25556162
ISSN: 0197-4580
CID: 1420202

Adverse performance effects of acute lorazepam administration in elderly long-term users: Pharmacokinetic and clinical predictors

Pomara, Nunzio; Lee, Sang Han; Bruno, Davide; Silber, Timothy; Greenblatt, David J; Petkova, Eva; Sidtis, John J
BACKGROUND: The benzodiazepine lorazepam is widely utilized in the treatment of elderly individuals with anxiety disorders and related conditions. Negative effects of acute lorazepam administration on cognitive performance, especially memory, have been reported in both previously untreated elderly and in individuals who have received short term (up to three weeks) treatment with therapeutic doses. However, it remains unclear if these adverse cognitive effects also persist after long-term use, which is frequently found in clinical practice. METHODS: Cognitively intact elderly individuals (n=37) on long-term (at least three months) daily treatment with lorazepam were studied using a double-blind placebo-controlled cross-over study design. Subjects were administered their highest daily unit dose of lorazepam (0.25 - 3.00mg) or placebo on different days, approximately 1week apart in a random order, and were assessed on memory, psychomotor speed, and subjective mood states. RESULTS: Subjects had significantly poorer recall and slowed psychomotor performance following acute lorazepam administration. There were no significant effects on self-ratings of mood, sedation, or anxiety in the whole group, but secondary analyses suggested a differential response in subjects with Generalized Anxiety Disorder. CONCLUSIONS: The reduced recall and psychomotor slowing that we observed, along with an absence of significant therapeutic benefits, following acute lorazepam administration in elderly long-term users reinforces the importance of cognitive toxicity as a clinical factor in benzodiazepine use, especially in this population.
PMCID:4258460
PMID: 25195839
ISSN: 0278-5846
CID: 1181302

Expression profile analysis of vulnerable CA1 pyramidal neurons in young-middle aged Ts65Dn mice

Alldred, Melissa J; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D
Down syndrome (DS) is the most prevalent cause of intellectual disability (ID). Individuals with DS show a variety of cognitive deficits, most notably in hippocampal learning and memory, and display pathological hallmarks of Alzheimer's disease (AD), with neurodegeneration of cholinergic basal forebrain (CBF) neurons. Elucidation of the molecular and cellular underpinnings of neuropathology has been assessed via gene expression analysis in a relevant animal model, termed the Ts65Dn mouse. The Ts65Dn mouse is a segmental trisomy model of DS which mimics DS/AD pathology, notably age-related cognitive dysfunction and degeneration of basal forebrain cholinergic neurons (BFCNs). To determine expression level changes, molecular fingerprinting of Cornu Ammonis 1 (CA1) pyramidal neurons was performed in adult (4-9 month old) Ts65Dn mice, at the initiation of BFCN degeneration. To quantitate transcriptomic changes during this early time period, laser capture microdissection (LCM), terminal continuation (TC) RNA amplification, custom-designed microarray analysis, and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting was performed. Results indicate significant alterations within CA1 pyramidal neurons of Ts65Dn mice compared to normal disomic (2N) littermates, notably in the downregulation of neurotrophins and their cognate neurotrophin receptors among other classes of transcripts relevant to neurodegeneration. These results of this single population gene expression analysis at the time of septohippocampal deficits in a trisomic mouse model shed light on a vulnerable circuit that may cause the AD-like pathology invariably seen in DS that could help to identify mechanisms of degeneration, and provide novel gene targets for therapeutic interventions. J. Comp. Neurol., 2014. (c) 2014 Wiley Periodicals, Inc.
PMCID:4232465
PMID: 25131634
ISSN: 0021-9967
CID: 1142212

Corpus Callosum Atrophy Rate in Mild Cognitive Impairment and Prodromal Alzheimer's Disease

Elahi, Sahar; Bachman, Alvin H; Lee, Sang Han; Sidtis, John J; Ardekani, Babak A
Background: Corpus callosum (CC) size and shape have been previously studied in Alzheimer's disease (AD) with the majority of studies having been cross-sectional. Due to the large variance in normal CC morphology, cross-sectional studies are limited in statistical power. Determining individual rates of change requires longitudinal data. Physiological changes are particularly relevant in mild cognitive impairment (MCI), in which CC morphology has not been previously studied longitudinally. Objective: To study temporal rates of change in CC morphology in MCI patients over a one-year period, and to determine whether these rates differ between MCI subjects who converted to AD (MCI-C) and those who did not (MCI-NC) over an average (+/-SD) observation period of 5.4 (+/-1.6) years. Methods: We used a novel multi-atlas based algorithm to segment the mid-sagittal cross-sectional area of the CC in longitudinal MRI scans. Rates of change of CC circularity, total area, and five sub-areas were compared between 57 MCI-NC and 81 MCI-C subjects. Results: The CC became less circular (-0.89% per year in MCI-NC, -1.85% per year in MCI-C) with time, with faster decline in MCI-C (p = 0.0002). In females, atrophy rates were higher in MCI-C relative to MCI-NC in total CC area (p = 0.0006), genu/rostrum (p = 0.005), and splenium (0.002). In males, these rates did not differ between groups. Conclusion: A greater than normal decline in CC circularity was shown to be an indicator of prodromal AD in MCI subjects. This measure is potentially useful as an imaging biomarker of disease and a therapeutic target in clinical trials.
PMCID:4451933
PMID: 25633676
ISSN: 1387-2877
CID: 1447922

Increased CSF Matrix Metalloproteinase-9 (MMP-9) and Reduced White Matter Integrity with Increasing Age in Late-life Major Depression [Meeting Abstract]

Pomara, Nunzio; Reichert, Chelsea; Lee, Sang Han; Nierenberg, Jay; Halliday, Matthew R; Sagare, Abhay P; Frangione, Blas; Zlokovic, Berislav V
ISI:000345905001053
ISSN: 1740-634x
CID: 1424592

Application of fused lasso logistic regression to the study of corpus callosum thickness in early Alzheimer's disease

Lee, Sang H; Yu, Donghyeon; Bachman, Alvin H; Lim, Johan; Ardekani, Babak A
We propose a fused lasso logistic regression to analyze callosal thickness profiles. The fused lasso regression imposes penalties on both the l1-norm of the model coefficients and their successive differences, and finds only a small number of non-zero coefficients which are locally constant. An iterative method of solving logistic regression with fused lasso regularization is proposed to make this a practical procedure. In this study we analyzed callosal thickness profiles sampled at 100 equal intervals between the rostrum and the splenium. The method was applied to corpora callosa of elderly normal controls (NCs) and patients with very mild or mild Alzheimer's disease (AD) from the Open Access Series of Imaging Studies (OASIS) database. We found specific locations in the genu and splenium of AD patients that are proportionally thinner than those of NCs. Callosal thickness in these regions combined with the Mini Mental State Examination scores differentiated AD from NC with 84% accuracy.
PMCID:4314964
PMID: 24121089
ISSN: 0165-0270
CID: 703042

Corpus Callosum Shape and Size Changes in Early Alzheimer's Disease: A Longitudinal MRI Study Using the OASIS Brain Database

Bachman, Alvin H; Lee, Sang Han; Sidtis, John J; Ardekani, Babak A
Background: Alzheimer's disease (AD) has been shown to be associated with shrinkage of the corpus callosum mid-sagittal cross-sectional area (CCA). Objective: To study temporal rates of corpus callosum atrophy not previously reported for early AD. Methods: We used longitudinal MRI scans to study the rates of change of CCA and circularity (CIR), a measure of its shape, in normal controls (NC, n = 75), patients with very mild AD (AD-VM, n = 51), and mild AD (AD-M, n = 21). Results: There were significant reduction rates in CCA and CIR in all three groups. While CCA reduction rates were not statistically different between groups, the CIR declined faster in AD-VM (p < 0.03) and AD-M (p < 0.0001) relative to NC, and in AD-M relative to AD-VM (p < 0.0004). Conclusion: CIR declines at an accelerated rate with AD severity. Its rate of change is more closely associated with AD progression than CCA or any of its sub-regions. CIR may be a useful group biomarker for objective assessment of treatments that aim to slow AD progression.
PMCID:4314946
PMID: 24121963
ISSN: 1387-2877
CID: 703032

Input permutation method to detect active voxels in fMRI study

Lee, Sang H; Lim, Johan; Park, Dohwan; Biswal, Bharat B; Petkova, Eva
Correctly identifying voxels or regions of interest (ROI) that actively respond to a given stimulus is often an important objective/step in many functional magnetic resonance imaging (fMRI) studies. In this article, we study a nonparametric method to detect active voxels, which makes minimal assumption about the distribution of blood oxygen level-dependent (BOLD) signals. Our proposal has several interesting features. It uses time lagged correlation to take into account the delay in response to the stimulus, due to hemodynamic variations. We introduce an input permutation method (IPM), a type of block permutation method, to approximate the null distribution of the test statistic. Also, we propose to pool the permutation-derived statistics of preselected voxels for a better approximation to the null distribution. Finally, we control multiple testing error rate using the local false discovery rate (FDR) by Efron [Correlation and large-scale simultaneous hypothesis testing. J Am Stat Assoc 102 (2007) 93-103] and Park et al. [Estimation of empirical null using a mixture of normals and its use in local false discovery rate. Comput Stat Data Anal 55 (2011) 2421-2432] to select the active voxels.
PMCID:3678281
PMID: 22819177
ISSN: 0730-725x
CID: 197622