Try a new search

Format these results:

Searched for:

person:levye01

in-biosketch:yes

Total Results:

130


Cystatin C in aging and in Alzheimer's disease

Mathews, Paul M; Levy, Efrat
Under normal conditions, the function of catalytically active proteases is regulated, in part, by their endogenous inhibitors, and any change in the synthesis and/or function of a protease or its endogenous inhibitors may result in inappropriate protease activity. Altered proteolysis as a result of an imbalance between active proteases and their endogenous inhibitors can occur during normal aging, and such changes have also been associated with multiple neuronal diseases, including Amyotrophic Lateral Sclerosis (ALS), rare heritable neurodegenerative disorders, ischemia, some forms of epilepsy, and Alzheimer's disease (AD). One of the most extensively studied endogenous inhibitor is the cysteine-protease inhibitor cystatin C (CysC). Changes in the expression and secretion of CysC in the brain have been described in various neurological disorders and in animal models of neurodegeneration, underscoring a role for CysC in these conditions. In the brain, multiple in vitro and in vivo findings have demonstrated that CysC plays protective roles via pathways that depend upon the inhibition of endosomal-lysosomal pathway cysteine proteases, such as cathepsin B (Cat B), via the induction of cellular autophagy, via the induction of cell proliferation, or via the inhibition of amyloid-beta (Abeta) aggregation. We review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced by CysC under various conditions. Beyond highlighting the essential role that balanced proteolytic activity plays in supporting normal brain aging, these findings suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
PMCID:5127725
PMID: 27333827
ISSN: 1872-9649
CID: 2159232

Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis

Li, Wei; Sultana, Nargis; Siraj, Nabeel; Ward, Liam J; Pawlik, Monika; Levy, Efrat; Jovinge, Stefan; Bengtsson, Eva; Yuan, Xi-Ming
Autophagy dysfunction in mouse atherosclerosis models has been associated with increased lipid accumulation, apoptosis and inflammation. Expression of cystatin C (CysC) is decreased in human atheroma, and CysC deficiency enhances atherosclerosis in mice. Here, we first investigated the association of autophagy and CysC expression levels with atheroma plaque severity in human atherosclerotic lesions. We found that autophagy proteins Atg5 and LC3beta in advanced human carotid atherosclerotic lesions are decreased, while markers of dysfunctional autophagy p62/SQSTM1 and ubiquitin are increased together with elevated levels of lipid accumulation and apoptosis. The expressions of LC3beta and Atg5 were positively associated with CysC expression. Second, we investigated whether CysC expression is involved in autophagy in atherosclerotic apoE-deficient mice, demonstrating that CysC deficiency (CysC-/- ) in these mice results in reduction of Atg5 and LC3beta levels and induction of apoptosis. Third, macrophages isolated from CysC-/- mice displayed increased levels of p62/SQSTM1 and higher sensitivity to 7-oxysterol-mediated lysosomal membrane destabilization and apoptosis. Finally, CysC treatment minimized oxysterol-mediated cellular lipid accumulation. We conclude that autophagy dysfunction is a characteristic of advanced human atherosclerotic lesions and is associated with reduced levels of CysC. The deficiency of CysC causes autophagy dysfunction and apoptosis in macrophages and apoE-deficient mice. The results indicate that CysC plays an important regulatory role in combating cell death via the autophagic pathway in atherosclerosis.
PMCID:4988293
PMID: 27079462
ISSN: 1582-4934
CID: 2078452

Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF

Jiang, Ying; Rigoglioso, Andrew; Peterhoff, Corrinne M; Pawlik, Monika; Sato, Yutaka; Bleiwas, Cynthia; Stavrides, Philip; Smiley, John F; Ginsberg, Stephen D; Mathews, Paul M; Levy, Efrat; Nixon, Ralph A
beta-amyloid precursor protein (APP) and amyloid beta peptide (Abeta) are strongly implicated in Alzheimer's disease (AD) pathogenesis, although recent evidence has linked APP-betaCTF generated by BACE1 (beta-APP cleaving enzyme 1) to the development of endocytic abnormalities and cholinergic neurodegeneration in early AD. We show that partial BACE1 genetic reduction prevents these AD-related pathological features in the Ts2 mouse model of Down syndrome. Partially reducing BACE1 by deleting one BACE1 allele blocked development of age-related endosome enlargement in the medial septal nucleus, cerebral cortex, and hippocampus and loss of choline acetyltransferase (ChAT)-positive medial septal nucleus neurons. BACE1 reduction normalized APP-betaCTF elevation but did not alter Abeta40 and Abeta42 peptide levels in brain, supporting a critical role in vivo for APP-betaCTF in the development of these abnormalities. Although ameliorative effects of BACE1 inhibition on beta-amyloidosis and synaptic proteins levels have been previously noted in AD mouse models, our results highlight the additional potential value of BACE1 modulation in therapeutic targeting of endocytic dysfunction and cholinergic neurodegeneration in Down syndrome and AD.
PMCID:4773919
PMID: 26923405
ISSN: 1558-1497
CID: 2006252

Correction: MiR-21 in Extracellular Vesicles Leads to Neurotoxicity via TLR7 Signaling in SIV Neurological Disease [Correction]

Yelamanchili, Sowmya V; Lamberty, Benjamin G; Rennard, Deborah A; Morsey, Brenda M; Hochfelder, Colleen G; Meays, Brittney M; Levy, Efrat; Fox, Howard S
PMID: 26327533
ISSN: 1553-7374
CID: 3629682

MiR-21 in Extracellular Vesicles Leads to Neurotoxicity via TLR7 Signaling in SIV Neurological Disease

Yelamanchili, Sowmya V; Lamberty, Benjamin G; Rennard, Deborah A; Morsey, Brenda M; Hochfelder, Colleen G; Meays, Brittney M; Levy, Efrat; Fox, Howard S
Recent studies have found that extracellular vesicles (EVs) play an important role in normal and disease processes. In the present study, we isolated and characterized EVs from the brains of rhesus macaques, both with and without simian immunodeficiency virus (SIV) induced central nervous system (CNS) disease. Small RNA sequencing revealed increased miR-21 levels in EVs from SIV encephalitic (SIVE) brains. In situ hybridization revealed increased miR-21 expression in neurons and macrophage/microglial cells/nodules during SIV induced CNS disease. In vitro culture of macrophages revealed that miR-21 is released into EVs and is neurotoxic when compared to EVs derived from miR-21-/- knockout animals. A mutation of the sequence within miR-21, predicted to bind TLR7, eliminates this neurotoxicity. Indeed miR-21 in EV activates TLR7 in a reporter cell line, and the neurotoxicity is dependent upon TLR7, as neurons isolated from TLR7-/- knockout mice are protected from neurotoxicity. Further, we show that EVs isolated from the brains of monkeys with SIV induced CNS disease activates TLR7 and were neurotoxic when compared to EVs from control animals. Finally, we show that EV-miR-21 induced neurotoxicity was unaffected by apoptosis inhibition but could be prevented by a necroptosis inhibitor, necrostatin-1, highlighting the actions of this pathway in a growing number of CNS disorders.
PMCID:4496044
PMID: 26154133
ISSN: 1553-7374
CID: 1663192

Early hyperactivity in lateral entorhinal cortex is associated with elevated levels of AbetaPP metabolites in the Tg2576 mouse model of Alzheimer's disease

Xu, Wenjin; Fitzgerald, Shane; Nixon, Ralph A; Levy, Efrat; Wilson, Donald A
Alzheimer's disease (AD) is a neurodegenerative disorder which is the most common cause of dementia in the elderly today. One of the earliest symptoms of AD is olfactory dysfunction. The present study investigated the effects of amyloid beta precursor protein (AbetaPP) metabolites, including amyloid-beta (Abeta) and AbetaPP C-terminal fragments (CTF), on olfactory processing in the lateral entorhinal cortex (LEC) using the Tg2576 mouse model of human AbetaPP over-expression. The entorhinal cortex is an early target of AD related neuropathology, and the LEC plays an important role in fine odor discrimination and memory. Cohorts of transgenic and age-matched wild-type (WT) mice at 3, 6, and 16months of age (MO) were anesthetized and acute, single-unit electrophysiology was performed in the LEC. Results showed that Tg2576 exhibited early LEC hyperactivity at 3 and 6MO compared to WT mice in both local field potential and single-unit spontaneous activity. However, LEC single-unit odor responses and odor receptive fields showed no detectable difference compared to WT at any age. Finally, the very early emergence of olfactory system hyper-excitability corresponded not to detectable Abeta deposition in the olfactory system, but rather to high levels of intracellular AbetaPP-CTF and soluble Abeta in the anterior piriform cortex (aPCX), a major afferent input to the LEC, by 3MO. The present results add to the growing evidence of AbetaPP-related hyper-excitability, and further implicate both soluble Abeta and non-Abeta AbetaPP metabolites in its early emergence.
PMCID:4324092
PMID: 25500142
ISSN: 0014-4886
CID: 1453232

Glutamatergic Transmission Aberration: A Major Cause of Behavioral Deficits in a Murine Model of Down's Syndrome

Kaur, Gurjinder; Sharma, Ajay; Xu, Wenjin; Gerum, Scott; Alldred, Melissa J; Subbanna, Shivakumar; Basavarajappa, Balapal S; Pawlik, Monika; Ohno, Masuo; Ginsberg, Stephen D; Wilson, Donald A; Guilfoyle, David N; Levy, Efrat
Trisomy 21, or Down's syndrome (DS), is the most common genetic cause of intellectual disability. Altered neurotransmission in the brains of DS patients leads to hippocampus-dependent learning and memory deficiency. Although genetic mouse models have provided important insights into the genes and mechanisms responsible for DS-specific changes, the molecular mechanisms leading to memory deficits are not clear. We investigated whether the segmental trisomy model of DS, Ts[Rb(12.1716)]2Cje (Ts2), exhibits hippocampal glutamatergic transmission abnormalities and whether these alterations cause behavioral deficits. Behavioral assays demonstrated that Ts2 mice display a deficit in nest building behavior, a measure of hippocampus-dependent nonlearned behavior, as well as dysfunctional hippocampus-dependent spatial memory tested in the object-placement and the Y-maze spontaneous alternation tasks. Magnetic resonance spectra measured in the hippocampi revealed a significantly lower glutamate concentration in Ts2 as compared with normal disomic (2N) littermates. The glutamate deficit accompanied hippocampal NMDA receptor1 (NMDA-R1) mRNA and protein expression level downregulation in Ts2 compared with 2N mice. In concert with these alterations, paired-pulse analyses suggested enhanced synaptic inhibition and/or lack of facilitation in the dentate gyrus of Ts2 compared with 2N mice. Ts2 mice also exhibited disrupted synaptic plasticity in slice recordings of the hippocampal CA1 region. Collectively, these findings imply that deficits in glutamate and NMDA-R1 may be responsible for impairments in synaptic plasticity in the hippocampus associated with behavioral dysfunctions in Ts2 mice. Thus, these findings suggest that glutamatergic deficits have a significant role in causing intellectual disabilities in DS.
PMCID:3983795
PMID: 24719089
ISSN: 0270-6474
CID: 881932

Spared piriform cortical single-unit odor processing and odor discrimination in the tg2576 mouse model of Alzheimer's disease

Xu, Wenjin; Lopez-Guzman, Mirielle; Schoen, Chelsea; Fitzgerald, Shane; Lauer, Stephanie L; Nixon, Ralph A; Levy, Efrat; Wilson, Donald A
Alzheimer's disease is a neurodegenerative disorder that is the most common cause of dementia in the elderly today. One of the earliest reported signs of Alzheimer's disease is olfactory dysfunction, which may manifest in a variety of ways. The present study sought to address this issue by investigating odor coding in the anterior piriform cortex, the primary cortical region involved in higher order olfactory function, and how it relates to performance on olfactory behavioral tasks. An olfactory habituation task was performed on cohorts of transgenic and age-matched wild-type mice at 3, 6 and 12 months of age. These animals were then anesthetized and acute, single-unit electrophysiology was performed in the anterior piriform cortex. In addition, in a separate group of animals, a longitudinal odor discrimination task was conducted from 3-12 months of age. Results showed that while odor habituation was impaired at all ages, Tg2576 performed comparably to age-matched wild-type mice on the olfactory discrimination task. The behavioral data mirrored intact anterior piriform cortex single-unit odor responses and receptive fields in Tg2576, which were comparable to wild-type at all age groups. The present results suggest that odor processing in the olfactory cortex and basic odor discrimination is especially robust in the face of amyloid beta precursor protein (AbetaPP) over-expression and advancing amyloid beta (Abeta) pathology. Odor identification deficits known to emerge early in Alzheimer's disease progression, therefore, may reflect impairments in linking the odor percept to associated labels in cortical regions upstream of the primary olfactory pathway, rather than in the basic odor processing itself.
PMCID:4152226
PMID: 25181487
ISSN: 1932-6203
CID: 1173742

Immunization targeting a minor plaque constituent clears beta-amyloid and rescues behavioral deficits in an Alzheimer's disease mouse model

Morales-Corraliza, Jose; Schmidt, Stephen D; Mazzella, Matthew J; Berger, Jason D; Wilson, Donald A; Wesson, Daniel W; Jucker, Mathias; Levy, Efrat; Nixon, Ralph A; Mathews, Paul M
Although anti-human beta-amyloid (Abeta) immunotherapy clears brain beta-amyloid plaques in Alzheimer's disease (AD), targeting additional brain plaque constituents to promote clearance has not been attempted. Endogenous murine Abeta is a minor Abeta plaque component in amyloid precursor protein (APP) transgenic AD models, which we show is approximately 3%-8% of the total accumulated Abeta in various human APP transgenic mice. Murine Abeta codeposits and colocalizes with human Abeta in amyloid plaques, and the two Abeta species coimmunoprecipitate together from brain extracts. In the human APP transgenic mouse model Tg2576, passive immunization for 8 weeks with a murine-Abeta-specific antibody reduced beta-amyloid plaque pathology, robustly decreasing both murine and human Abeta levels. The immunized mice additionally showed improvements in two behavioral assays, odor habituation and nesting behavior. We conclude that passive anti-murine Abeta immunization clears Abeta plaque pathology-including the major human Abeta component-and decreases behavioral deficits, arguing that targeting minor endogenous brain plaque constituents can be beneficial, broadening the range of plaque-associated targets for AD therapeutics.
PMCID:3426627
PMID: 22608241
ISSN: 0197-4580
CID: 180342

Early Endosomal Abnormalities and Cholinergic Neuron Degeneration in Amyloid-beta Protein Precursor Transgenic Mice

Choi, Jennifer H K; Kaur, Gurjinder; Mazzella, Matthew J; Morales-Corraliza, Jose; Levy, Efrat; Mathews, Paul M
Early endosomal changes, a prominent pathology in neurons early in Alzheimer's disease, also occur in neurons and peripheral tissues in Down syndrome. While in Down syndrome models increased amyloid-beta protein precursor (AbetaPP) expression is known to be a necessary contributor on the trisomic background to this early endosomal pathology, increased AbetaPP alone has yet to be shown to be sufficient to drive early endosomal alterations in neurons. Comparing two AbetaPP transgenic mouse models, one that contains the AbetaPP Swedish K670N/M671L double mutation at the beta-cleavage site (APP23) and one that has the AbetaPP London V717I mutation near the gamma-cleavage site (APPLd2), we show significantly altered early endosome morphology in fronto-parietal neurons as well as enlargement of early endosomes in basal forebrain cholinergic neurons of the medial septal nucleus in the APP23 model, which has the higher levels of AbetaPP beta-C-terminal fragment (betaCTF) accumulation. Early endosomal changes correlate with a marked loss of the cholinergic population, which is consistent with the known dependence of the large projection cholinergic cells on endosome-mediated retrograde neurotrophic transport. Our findings support the idea that increased expression of AbetaPP and AbetaPP metabolites in neurons is sufficient to drive early endosomal abnormalities in vivo, and that disruption of the endocytic system is likely to contribute to basal forebrain cholinergic vulnerability.
PMCID:3616896
PMID: 23254640
ISSN: 1387-2877
CID: 231162