Searched for: person:loomic01
in-biosketch:yes
Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment
Werba, Gregor; Weissinger, Daniel; Kawaler, Emily A; Zhao, Ende; Kalfakakou, Despoina; Dhara, Surajit; Wang, Lidong; Lim, Heather B; Oh, Grace; Jing, Xiaohong; Beri, Nina; Khanna, Lauren; Gonda, Tamas; Oberstein, Paul; Hajdu, Cristina; Loomis, Cynthia; Heguy, Adriana; Sherman, Mara H; Lund, Amanda W; Welling, Theodore H; Dolgalev, Igor; Tsirigos, Aristotelis; Simeone, Diane M
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) is a complex ecosystem that drives tumor progression; however, in-depth single cell characterization of the PDAC TME and its role in response to therapy is lacking. Here, we perform single-cell RNA sequencing on freshly collected human PDAC samples either before or after chemotherapy. Overall, we find a heterogeneous mixture of basal and classical cancer cell subtypes, along with distinct cancer-associated fibroblast and macrophage subpopulations. Strikingly, classical and basal-like cancer cells exhibit similar transcriptional responses to chemotherapy and do not demonstrate a shift towards a basal-like transcriptional program among treated samples. We observe decreased ligand-receptor interactions in treated samples, particularly between TIGIT on CD8 + T cells and its receptor on cancer cells, and identify TIGIT as the major inhibitory checkpoint molecule of CD8 + T cells. Our results suggest that chemotherapy profoundly impacts the PDAC TME and may promote resistance to immunotherapy.
PMCID:9925748
PMID: 36781852
ISSN: 2041-1723
CID: 5427092
Hedgehog and PDGF Signaling Intersect During Postnatal Lung Development
Yie, Ting-An; Loomis, Cynthia A; Nowatzky, Johannes; Khodadadi-Jamayran, Alireza; Lin, Ziyan; Cammer, Michael; Barnett, Clea; Mezzano, Valeria; Alu, Mark; Novick, Jackson A; Munger, John S; Kugler, Matthias C
Normal lung development critically depends on Hedgehog (HH) and Platelet-derived growth factor (PDGF) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH and PDGF signaling and their impact/convergence on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa and Pdgfra knockouts during secondary alveolar septation. Utilizing a dual signaling reporter, Gli1IZ;PdgfraEGFP
PMID: 36693140
ISSN: 1535-4989
CID: 5419542
A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8
Rodriguez-Rodriguez, Bruno A; Ciabattoni, Grace O; Valero-Jimenez, Ana M; Crosse, Keaton M; Schinlever, Austin R; Galvan, Joaquin J Rodriguez; Duerr, Ralf; Yeung, Stephen T; McGrath, Marisa E; Loomis, Cynthia; Khanna, Kamal M; Desvignes, Ludovic; Frieman, Matthew F; Ortigoza, Mila B; Dittmann, Meike
Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets 1,2 . Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not transmit SARS-CoV-2 3 . Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2) and omicron (B.1.1.529). We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing for the first time a role for an accessory protein this context.
PMCID:9558433
ISSN: 2692-8205
CID: 5390862
Interleukin-17 governs hypoxic adaptation of injured epithelium
Konieczny, Piotr; Xing, Yue; Sidhu, Ikjot; Subudhi, Ipsita; Mansfield, Kody P; Hsieh, Brandon; Biancur, Douglas E; Larsen, Samantha B; Cammer, Michael; Li, Dongqing; Landén, Ning Xu; Loomis, Cynthia; Heguy, Adriana; Tikhonova, Anastasia N; Tsirigos, Aristotelis; Naik, Shruti
Mammalian cells autonomously activate hypoxia-inducible transcription factors (HIFs) to ensure survival in low-oxygen environments. We report here that injury-induced hypoxia is insufficient to trigger HIF1α in damaged epithelium. Instead, multimodal single-cell and spatial transcriptomics analyses and functional studies reveal that retinoic acid-related orphan receptor γt+ (RORγt+) γδ T cell-derived interleukin-17A (IL-17A) is necessary and sufficient to activate HIF1α. Protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling proximal of IL-17 receptor C (IL-17RC) activates mammalian target of rapamycin (mTOR) and consequently HIF1α. The IL-17A-HIF1α axis drives glycolysis in wound front epithelia. Epithelial-specific loss of IL-17RC, HIF1α, or blockade of glycolysis derails repair. Our findings underscore the coupling of inflammatory, metabolic, and migratory programs to expedite epithelial healing and illuminate the immune cell-derived inputs in cellular adaptation to hypoxic stress during repair.
PMID: 35709248
ISSN: 1095-9203
CID: 5268732
High Systemic Type I Interferon Activity is Associated with Active Class III/IV Lupus Nephritis
Iwamoto, Taro; Dorschner, Jessica M; Selvaraj, Shanmugapriya; Mezzano, Valeria; Jensen, Mark A; Vsetecka, Danielle; Amin, Shreyasee; Makol, Ashima; Osborn, Thomas; Moder, Kevin; Chowdhary, Vaidehi R; Izmirly, Peter; Belmont, H Michael; Clancy, Robert M; Buyon, Jill P; Wu, Ming; Loomis, Cynthia A; Niewold, Timothy B
OBJECTIVE:Previous studies suggest a link between high serum type I interferon (IFN) and lupus nephritis (LN). We determined whether serum IFN activity is associated with subtypes of LN and studied renal tissues and cells to understand the impact of IFN in LN. METHODS:). Podocyte cell line gene expression was measured by real-time PCR. RESULTS:expression was not closely co-localized with pDCs. IFN directly activated podocyte cell lines to induce chemokines and proapoptotic molecules. CONCLUSION/CONCLUSIONS:Systemic high IFN is involved in the pathogenesis of severe LN. We do not find co-localization of pDCs with IFN signature in renal tissue, and instead observe the greatest intensity of IFN signature in glomerular areas, which could suggest a blood source of IFN.
PMID: 34782453
ISSN: 0315-162x
CID: 5049012
Artificial intelligence and deep learning to map immune cell types in inflamed human tissue
Van Buren, Kayla; Li, Yi; Zhong, Fanghao; Ding, Yuan; Puranik, Amrutesh; Loomis, Cynthia A; Razavian, Narges; Niewold, Timothy B
Biopsies of inflammatory tissue contain a complex network of interacting cells, orchestrating the immune or autoimmune response. While standard histological examination can identify relationships, it is clear that a great amount of data on each slide is not quantitated or categorized in standard microscopic examinations. To deal with the huge amount of data present in biopsy tissue in an unbiased and comprehensive way, we have developed a deep learning algorithm to identify immune cells in biopsies of inflammatory lesions. We focused on T follicular helper (Tfh) cell subsets and B cells in dermatomyositis biopsy images. We achieved strong performance on detection and classification of cells, including the rare Tfh cell subsets present in the tissue. This algorithm could be used to perform distance mapping between cell types in tissue, and could be easily adapted to other disease states.
PMID: 35131237
ISSN: 1872-7905
CID: 5175982
Combined Inhibition of SHP2 and CXCR1/2 Promotes Anti-Tumor T Cell Response in NSCLC
Tang, Kwan Ho; Li, Shuai; Khodadadi-Jamayran, Alireza; Jen, Jayu; Han, Han; Guidry, Kayla; Chen, Ting; Hao, Yuan; Fedele, Carmine; Zebala, John A; Maeda, Dean Y; Christensen, James G; Olson, Peter; Athanas, Argus; Loomis, Cynthia A; Tsirigos, Aristotelis; Wong, Kwok-Kin; Neel, Benjamin G
SHP2 inhibitors (SHP2i) alone and in various combinations are being tested in multiple tumors with over-activation of the RAS/ERK pathway. SHP2 plays critical roles in normal cell signaling; hence, SHP2is could influence the tumor microenvironment. We found that SHP2i treatment depleted alveolar and M2-like macrophages, induced tumor-intrinsic CCL5/CXCL10 secretion and promoted B and T lymphocyte infiltration in Kras- and Egfr-mutant non-small cell lung cancer (NSCLC). However, treatment also increased intratumor gMDSCs via tumor-intrinsic, NF-kB-dependent production of CXCR2 ligands. Other RAS/ERK pathway inhibitors also induced CXCR2 ligands and gMDSC influx in mice, and CXCR2 ligands were induced in tumors from patients on KRASG12C-inhibitor trials. Combined SHP2(SHP099)/CXCR1/2(SX682) inhibition depleted a specific cluster of S100a8/9high gMDSCs, generated Klrg1+ CD8+ effector T cells with a strong cytotoxic phenotype but expressing the checkpoint receptor NKG2A, and enhanced survival in Kras- and Egfr-mutant models. Our results argue for testing RAS/ERK pathway/CXCR1/2/NKG2A inhibitor combinations in NSCLC patients.
PMID: 34353854
ISSN: 2159-8290
CID: 4969352
Simultaneous checkpoint inhibition and immune cell activation that is safely localized to solidtumors [Meeting Abstract]
Richieri, R A; Narula, N; Loomis, C A; Mezzano, V; Billimek, J; Reynolds, G T; Reutelingsperger, C; Zijlstra, A; Parseghian, M H
Unlike other checkpoint inhibitors, our targeted immunotherapeutic localizes to any solid tumor and simultaneouslyshields an agent of immuno suppression while presenting a signal for immunostimulation. Phosphatidylserine (PS)exposure on the extracellular surface of living tumor cells and their vasculatures provides one avenue by which thetumor microenvironment promotes immunosuppression. Extracellular surface PS is inherent to a tumor and itsvasculature, even for inoperable tumors, and its expression cannot be mutated nor affected by acquired drugresistance. Annexin A5 (AnxA5) is a direct, high-affinity PS-binding protein that localizes to cells with PS exposed onthe outer plasma membrane. In our studies, we conjugated a proprietary modified AnxA5, lacking cellularinternalization, to TNFalpha (AnxA5 -TNFalpha) to convert the immunosuppresive environs of a murine 4T1 triplenegative breast cancer (TNBC) into an immunostimulated one. This strategy localized the immune response to the tumor and minimized side effects, as evidenced by a lack of toxicity for up to 7 days in non-tumor bearing Balb/cfemale mice given up to 1 mg/kg. Proper assembly and functionality of AnxA5 -TNFalpha was verified simultaneouslyby ellipsometry, an optical technique similar to plasmon resonance. Fully assembled constructs were tested forbinding to PS coated slides. The degree of light polarization is proportional to the amount of PS bound by the AnxA5complex. Samples could be further incubated with TNF receptors to verify TNFalpha activity. Based on dose escalationstudies in 4T1 tumor-bearing mice where the TNBC tumors were grown in the mammary fat pads, optimal dosages were determined for AnxA5 -TNFalpha (18 mug) and AnxA5 alone as a control (180 mug). These doses were furthertested in a 4T1 growth inhibition study. Tumor size was tracked by caliper in two groups of mice (n=5/group)receiving drug treatment on days 12, 14 and 16 and a repeated measures ANOVA was conducted onmeasurements taken before, during and post-treatment. While median tumor size did not differ between control and drug treatment groups during the pre-treatment interval (p=0.84), there was a significant difference post-treatment(p<0.001) with mice receiving AnxA5 -TNFalpha having much smaller TNBC tumors. Tumors from the study were embedded in paraffin, sectioned (5 mum) and the overall immune cell content determined by H&E staining. Once it was evident there was a greater quantity of immune cells in AnxA5 -TNFalpha treated tumors vs. controls, sections were stained with validated antibodies to identify and count the immunoactivated T-cells, NK-cells and macrophages. There was a 3X greater mean percentage of CD8 and CD4 T-cells in mice receiving drug vs. control(p=0.03) along with 2.5X and 5X increases in NK-cells and M1 immunoactive macrophages, respectively.
Conclusion(s): Our AnxA5 -TNFalpha inhibits the PS inhibitor while simultaneously activating TNF activators!
EMBASE:637180376
ISSN: 2326-6074
CID: 5158452
Decreased production of epithelial-derived antimicrobial molecules at mucosal barriers during early life
Lokken-Toyli, Kristen L; de Steenhuijsen Piters, Wouter A A; Zangari, Tonia; Martel, Rachel; Kuipers, Kirsten; Shopsin, Bo; Loomis, Cynthia; Bogaert, Debby; Weiser, Jeffrey N
Young age is a risk factor for respiratory and gastrointestinal infections. Here, we compared infant and adult mice to identify age-dependent mechanisms that drive susceptibility to mucosal infections during early life. Transcriptional profiling of the upper respiratory tract (URT) epithelium revealed significant dampening of early life innate mucosal defenses. Epithelial-mediated production of the most abundant antimicrobial molecules, lysozyme, and lactoferrin, and the polymeric immunoglobulin receptor (pIgR), responsible for IgA transcytosis, was expressed in an age-dependent manner. This was attributed to delayed functional development of serous cells. Absence of epithelial-derived lysozyme and the pIgR was also observed in the small intestine during early life. Infection of infant mice with lysozyme-susceptible strains of Streptococcus pneumoniae or Staphylococcus aureus in the URT or gastrointestinal tract, respectively, demonstrated an age-dependent regulation of lysozyme enzymatic activity. Lysozyme derived from maternal milk partially compensated for the reduction in URT lysozyme activity of infant mice. Similar to our observations in mice, expression of lysozyme and the pIgR in nasopharyngeal samples collected from healthy human infants during the first year of life followed an age-dependent regulation. Thus, a global pattern of reduced antimicrobial and IgA-mediated defenses may contribute to increased susceptibility of young children to mucosal infections.
PMID: 34465896
ISSN: 1935-3456
CID: 4998412
Episodic Aspiration with Oral Commensals Induces a MyD88-dependent, Pulmonary Th17 Response that Mitigates Susceptibility to Streptococcus pneumoniae
Wu, Benjamin G; Sulaiman, Imran; Tsay, Jun-Chieh J; Perez, Luisanny; Franca, Brendan; Li, Yonghua; Wang, Jing; Gonzalez, Amber N; El-Ashmawy, Mariam; Carpenito, Joseph; Olsen, Evan; Sauthoff, Maya; Yie, Kevin; Liu, Xiuxiu; Shen, Nan; Clemente, Jose C; Kapoor, Bianca; Zangari, Tonia; Mezzano, Valeria; Loomis, Cynthia; Weiden, Michael D; Koralov, Sergei; D'Armiento, Jeanine; Ahuja, Sunil K; Wu, Xue-Ru; Weiser, Jeffrey N; Segal, Leopoldo N
Rationale Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with increased Th17 inflammatory phenotype. In this study we evaluated the microbial and host immune response dynamics after aspiration with a oral commensals using a preclinical mouse model. Methods Aspiration with a mixture of human oral commensals (MOC; Prevotella melaninogenica, Veillonella parvula, and Streptococcus mitis) was modeled in mice followed by variable time of sacrifice. Genetic background of mice included WT, MyD88 knock out and STAT3C. Measurements 16S rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host transcriptome sequencing was used to characterize host immune phenotype. Main Results While MOC aspiration correlated with lower airway dysbiosis that resolved within five days, it induced an extended inflammatory response associated with IL17-producing T-cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration prior to a respiratory challenge with S. pneumoniae led to a decreased in host's susceptibility to this pathogen. Conclusions Thus, in otherwise healthy mice, a single aspiration event with oral commensals are rapidly cleared from the lower airways, but induce a prolonged Th17 response that secondarily decreased susceptibility to respiratory pathogens. Translationally, these data implicate an immuno-protective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower airway pathogens.
PMID: 33166473
ISSN: 1535-4970
CID: 4664852