Try a new search

Format these results:

Searched for:

person:mellol01

in-biosketch:yes

Total Results:

65


Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability

Iemi, Luca; Gwilliams, Laura; Samaha, Jason; Auksztulewicz, Ryszard; Cycowicz, Yael M; King, Jean-Remi; Nikulin, Vadim V; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Schroeder, Charles E; Melloni, Lucia; Haegens, Saskia
The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.
PMID: 34875382
ISSN: 1095-9572
CID: 5105842

Long-term priors influence visual perception through recruitment of long-range feedback

Hardstone, Richard; Zhu, Michael; Flinker, Adeen; Melloni, Lucia; Devore, Sasha; Friedman, Daniel; Dugan, Patricia; Doyle, Werner K; Devinsky, Orrin; He, Biyu J
Perception results from the interplay of sensory input and prior knowledge. Despite behavioral evidence that long-term priors powerfully shape perception, the neural mechanisms underlying these interactions remain poorly understood. We obtained direct cortical recordings in neurosurgical patients as they viewed ambiguous images that elicit constant perceptual switching. We observe top-down influences from the temporal to occipital cortex, during the preferred percept that is congruent with the long-term prior. By contrast, stronger feedforward drive is observed during the non-preferred percept, consistent with a prediction error signal. A computational model based on hierarchical predictive coding and attractor networks reproduces all key experimental findings. These results suggest a pattern of large-scale information flow change underlying long-term priors' influence on perception and provide constraints on theories about long-term priors' influence on perception.
PMID: 34725348
ISSN: 2041-1723
CID: 5037932

Effects of hippocampal interictal discharge timing, duration, and spatial extent on list learning

Leeman-Markowski, Beth; Hardstone, Richard; Lohnas, Lynn; Cowen, Benjamin; Davachi, Lila; Doyle, Werner; Dugan, Patricia; Friedman, Daniel; Liu, Anli; Melloni, Lucia; Selesnick, Ivan; Wang, Binhuan; Meador, Kimford; Devinsky, Orrin
Interictal epileptiform discharges (IEDs) can impair memory. The properties of IEDs most detrimental to memory, however, are undefined. We studied the impact of temporal and spatial characteristics of IEDs on list learning. Subjects completed a memory task during intracranial EEG recordings including hippocampal depth and temporal neocortical subdural electrodes. Subjects viewed a series of objects, and after a distracting task, recalled the objects from the list. The impacts of IED presence, duration, and propagation to neocortex during encoding of individual stimuli were assessed. The effects of IED total number and duration during maintenance and recall periods on delayed recall performance were also determined. The influence of IEDs during recall was further investigated by comparing the likelihood of IEDs preceding correctly recalled items vs. periods of no verbal response. Across 6 subjects, we analyzed 28 hippocampal and 139 lateral temporal contacts. Recall performance was poor, with a median of 17.2% correct responses (range 10.4-21.9%). Interictal epileptiform discharges during encoding, maintenance, and recall did not significantly impact task performance, and there was no significant difference between the likelihood of IEDs during correct recall vs. periods of no response. No significant effects of discharge duration during encoding, maintenance, or recall were observed. Interictal epileptiform discharges with spread to lateral temporal cortex during encoding did not adversely impact recall. A post hoc analysis refining model assumptions indicated a negative impact of IED count during the maintenance period, but otherwise confirmed the above results. Our findings suggest no major effect of hippocampal IEDs on list learning, but study limitations, such as baseline hippocampal dysfunction, should be considered. The impact of IEDs during the maintenance period may be a focus of future research.
PMID: 34416521
ISSN: 1525-5069
CID: 4988992

Decoding the Content of Auditory Sensory Memory Across Species

Cappotto, Drew; Auksztulewicz, Ryszard; Kang, HiJee; Poeppel, David; Melloni, Lucia; Schnupp, Jan
In contrast to classical views of working memory (WM) maintenance, recent research investigating activity-silent neural states has demonstrated that persistent neural activity in sensory cortices is not necessary for active maintenance of information in WM. Previous studies in humans have measured putative memory representations indirectly, by decoding memory contents from neural activity evoked by a neutral impulse stimulus. However, it is unclear whether memory contents can also be decoded in different species and attentional conditions. Here, we employ a cross-species approach to test whether auditory memory contents can be decoded from electrophysiological signals recorded in different species. Awake human volunteers (N = 21) were exposed to auditory pure tone and noise burst stimuli during an auditory sensory memory task using electroencephalography. In a closely matching paradigm, anesthetized female rats (N = 5) were exposed to comparable stimuli while neural activity was recorded using electrocorticography from the auditory cortex. In both species, the acoustic frequency could be decoded from neural activity evoked by pure tones as well as neutral frozen noise burst stimuli. This finding demonstrates that memory contents can be decoded in different species and different states using homologous methods, suggesting that the mechanisms of sensory memory encoding are evolutionarily conserved across species.
PMID: 33625488
ISSN: 1460-2199
CID: 4794692

Making the hard problem of consciousness easier

Melloni, Lucia; Mudrik, Liad; Pitts, Michael; Koch, Christof
PMID: 34045342
ISSN: 1095-9203
CID: 4924342

Perceptual Gains and Losses in Synesthesia and Schizophrenia

van Leeuwen, Tessa M; Sauer, Andreas; Jurjut, Anna-Maria; Wibral, Michael; Uhlhaas, Peter J; Singer, Wolf; Melloni, Lucia
Individual differences in perception are widespread. Considering inter-individual variability, synesthetes experience stable additional sensations; schizophrenia patients suffer perceptual deficits in, eg, perceptual organization (alongside hallucinations and delusions). Is there a unifying principle explaining inter-individual variability in perception? There is good reason to believe perceptual experience results from inferential processes whereby sensory evidence is weighted by prior knowledge about the world. Perceptual variability may result from different precision weighting of sensory evidence and prior knowledge. We tested this hypothesis by comparing visibility thresholds in a perceptual hysteresis task across medicated schizophrenia patients (N = 20), synesthetes (N = 20), and controls (N = 26). Participants rated the subjective visibility of stimuli embedded in noise while we parametrically manipulated the availability of sensory evidence. Additionally, precise long-term priors in synesthetes were leveraged by presenting either synesthesia-inducing or neutral stimuli. Schizophrenia patients showed increased visibility thresholds, consistent with overreliance on sensory evidence. In contrast, synesthetes exhibited lowered thresholds exclusively for synesthesia-inducing stimuli suggesting high-precision long-term priors. Additionally, in both synesthetes and schizophrenia patients explicit, short-term priors-introduced during the hysteresis experiment-lowered thresholds but did not normalize perception. Our results imply that perceptual variability might result from differences in the precision afforded to prior beliefs and sensory evidence, respectively.
PMCID:8084450
PMID: 33150444
ISSN: 1745-1701
CID: 4873602

Covert Speech Comprehension Predicts Recovery From Acute Unresponsive States

Sokoliuk, Rodika; Degano, Giulio; Banellis, Leah; Melloni, Lucia; Hayton, Tom; Sturman, Steve; Veenith, Tonny; Yakoub, Kamal M; Belli, Antonio; Noppeney, Uta; Cruse, Damian
OBJECTIVE:Patients with traumatic brain injury who fail to obey commands after sedation-washout pose one of the most significant challenges for neurological prognostication. Reducing prognostic uncertainty will lead to more appropriate care decisions and ensure provision of limited rehabilitation resources to those most likely to benefit. Bedside markers of covert residual cognition, including speech comprehension, may reduce this uncertainty. METHODS:We recruited 28 patients with acute traumatic brain injury who were 2 to 7 days sedation-free and failed to obey commands. Patients heard streams of isochronous monosyllabic words that built meaningful phrases and sentences while their brain activity via electroencephalography (EEG) was recorded. In healthy individuals, EEG activity only synchronizes with the rhythm of phrases and sentences when listeners consciously comprehend the speech. This approach therefore provides a measure of residual speech comprehension in unresponsive patients. RESULTS:Seventeen and 16 patients were available for assessment with the Glasgow Outcome Scale Extended (GOSE) at 3 months and 6 months, respectively. Outcome significantly correlated with the strength of patients' acute cortical tracking of phrases and sentences (r > 0.6, p < 0.007), quantified by inter-trial phase coherence. Linear regressions revealed that the strength of this comprehension response (beta = 0.603, p = 0.006) significantly improved the accuracy of prognoses relative to clinical characteristics alone (eg, Glasgow Coma Scale [GCS], computed tomography [CT] grade). INTERPRETATION/CONCLUSIONS:A simple, passive, auditory EEG protocol improves prognostic accuracy in a critical period of clinical decision making. Unlike other approaches to probing covert cognition for prognostication, this approach is entirely passive and therefore less susceptible to cognitive deficits, increasing the number of patients who may benefit. ANN NEUROL 2021.
PMID: 33368496
ISSN: 1531-8249
CID: 4751792

Learning hierarchical sequence representations across human cortex and hippocampus

Henin, Simon; Turk-Browne, Nicholas B; Friedman, Daniel; Liu, Anli; Dugan, Patricia; Flinker, Adeen; Doyle, Werner; Devinsky, Orrin; Melloni, Lucia
Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.
PMCID:7895424
PMID: 33608265
ISSN: 2375-2548
CID: 4793972

Active Inference as a Computational Framework for Consciousness

Vilas, Martina G.; Auksztulewicz, Ryszard; Melloni, Lucia
Recently, the mechanistic framework of active inference has been put forward as a principled foundation to develop an overarching theory of consciousness which would help address conceptual disparities in the field (Wiese 2018; Hohwy and Seth 2020). For that promise to bear out, we argue that current proposals resting on the active inference scheme need refinement to become a process theory of consciousness. One way of improving a theory in mechanistic terms is to use formalisms such as computational models that implement, attune and validate the conceptual notions put forward. Here, we examine how computational modelling approaches have been used to refine the theoretical proposals linking active inference and consciousness, with a focus on the extent and success to which they have been developed to accommodate different facets of consciousness and experimental paradigms, as well as how simulations and empirical data have been used to test and improve these computational models. While current attempts using this approach have shown promising results, we argue they remain preliminary in nature. To refine their predictive and structural validity, testing those models against empirical data is needed i.e., new and unobserved neural data. A remaining challenge for active inference to become a theory of consciousness is to generalize the model to accommodate the broad range of consciousness explananda; and in particular to account for the phenomenological aspects of experience. Notwithstanding these gaps, this approach has proven to be a valuable avenue for theory advancement and holds great potential for future research.
SCOPUS:85112221554
ISSN: 1878-5158
CID: 5001942

Dissociation and Brain Rhythms: Pitfalls and Promises

Grent-'t-Jong, Tineke; Melloni, Lucia; Uhlhaas, Peter J
Recently, Vesuna et al. proposed a novel circuit mechanism underlying dissociative states using optogenetics and pharmacology in mice in combination with intracranial recordings and electrical stimulation in an epilepsy patient. Specifically, the authors identified a posteromedial cortical delta-rhythm that underlies states of dissociation. In the following, we would like to critically review these findings in the context of the human literature on dissociation as well as highlight the challenges in translational neuroscience to link complex behavioral phenotypes in psychiatric syndromes to circumscribed circuit mechanisms.
PMCID:8686110
PMID: 34938216
ISSN: 1664-0640
CID: 5108992