Try a new search

Format these results:

Searched for:

person:merued01

in-biosketch:yes

Total Results:

151


Structure-guided identification of a laminin binding site on the laminin receptor precursor

Jamieson, Kelly V; Hubbard, Stevan R; Meruelo, Daniel
The 37/ 67-kDa human laminin receptor (LamR) is a cell surface receptor for laminin, prion protein, and a variety of viruses. Because of its wide range of ligands, LamR plays a role in numerous pathologies. LamR overexpression correlates with a highly invasive cell phenotype and increased metastatic ability, mediated by interactions between LamR and laminin. In addition, the specific targeting of LamR with small interfering RNAs, blocking antibodies, and Sindbis viral vectors confers anti-tumor effects. We adopted a structure-based approach to map a laminin binding site on human LamR by comparing the sequences and crystal structures of LamR and Archaeoglobus fulgidus S2p, a non-laminin-binding ortholog. Here, we identify a laminin binding site on LamR, comprising residues Phe32, Glu35, and Arg155, which are conserved among mammalian species. Mutation of these residues results in a significant loss of laminin binding. Further, recombinant wild-type LamR is able to act as a soluble decoy to inhibit cellular migration towards laminin. Mutation of this laminin binding site results in loss of migration inhibition, which demonstrates the physiological role of Phe32, Glu35, and Arg155 for laminin binding activity. Mapping of the LamR binding site should contribute to the development of therapeutics that inhibit LamR interactions with laminin and may aid in the prevention of tumor growth and metastasis
PMCID:3008175
PMID: 21040730
ISSN: 1089-8638
CID: 116207

Interactions between laminin receptor and the cytoskeleton during translation and cell motility

Venticinque, Lisa; Jamieson, Kelly V; Meruelo, Daniel
Human laminin receptor acts as both a component of the 40S ribosomal subunit to mediate cellular translation and as a cell surface receptor that interacts with components of the extracellular matrix. Due to its role as the cell surface receptor for several viruses and its overexpression in several types of cancer, laminin receptor is a pathologically significant protein. Previous studies have determined that ribosomes are associated with components of the cytoskeleton, however the specific ribosomal component(s) responsible has not been determined. Our studies show that laminin receptor binds directly to tubulin. Through the use of siRNA and cytoskeletal inhibitors we demonstrate that laminin receptor acts as a tethering protein, holding the ribosome to tubulin, which is integral to cellular translation. Our studies also show that laminin receptor is capable of binding directly to actin. Through the use of siRNA and cytoskeletal inhibitors we have shown that this laminin receptor-actin interaction is critical for cell migration. These data indicate that interactions between laminin receptor and the cytoskeleton are vital in mediating two processes that are intimately linked to cancer, cellular translation and migration
PMCID:3017552
PMID: 21249134
ISSN: 1932-6203
CID: 120657

Activation of cytotoxic and regulatory functions of NK cells by sindbis viral vectors

Granot, Tomer; Venticinque, Lisa; Tseng, Jen-Chieh; Meruelo, Daniel
Oncolytic viruses (OVs) represent a relatively novel anti-cancer modality. Like other new cancer treatments, effective OV therapy will likely require combination with conventional treatments. In order to design combinatorial treatments that work well together, a greater scrutiny of the mechanisms behind the individual treatments is needed. Sindbis virus (SV) based vectors have previously been shown to target and kill tumors in xenograft, syngeneic, and spontaneous mouse models. However, the effect of SV treatment on the immune system has not yet been studied. Here we used a variety of methods, including FACS analysis, cytotoxicity assays, cell depletion, imaging of tumor growth, cytokine blockade, and survival experiments, to study how SV therapy affects Natural Killer (NK) cell function in SCID mice bearing human ovarian carcinoma tumors. Surprisingly, we found that SV anti-cancer efficacy is largely NK cell-dependent. Furthermore, the enhanced therapeutic effect previously observed from Sin/IL12 vectors, which carry the gene for interleukin 12, is also NK cell dependent, but works through a separate IFNgamma-dependent mechanism, which also induces the activation of peritoneal macrophages. These results demonstrate the multimodular nature of SV therapy, and open up new possibilities for potential synergistic or additive combinatorial therapies with other treatments
PMCID:3107224
PMID: 21674047
ISSN: 1932-6203
CID: 134464

Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor

Tseng, J-C; Granot, T; DiGiacomo, V; Levin, B; Meruelo, D
Genetic instability of cancer cells generates resistance after initial responses to chemotherapeutic agents. Several oncolytic viruses have been designed to exploit specific signatures of cancer cells, such as important surface markers or pivotal signaling pathways for selective replication. It is less likely for cancer cells to develop resistance given that mutations in these cancer signatures would negatively impact tumor growth and survival. However, as oncolytic viral vectors are large particles, they suffer from inefficient extravasation from tumor blood vessels. Their ability to reach cancer cells is an important consideration in achieving specific oncolytic targeting and potential vector replication. Our previous studies indicated that the Sindbis viral vectors target tumor cells by the laminin receptor. Here, we present evidence that modulating tumor vascular leakiness, using VEGF and/or metronomic chemotherapy regimens, significantly enhances tumor vascular permeability and directly enhances oncolytic Sindbis vector targeting in tumor models. Because host-derived vascular endothelium cells are genetically stable and less likely to develop resistance to chemotherapeutics, a combined metronomic chemotherapeutics and oncolytic vector regimen should provide a new approach for cancer therapy. This mechanism could explain the synergistic treatment outcomes observed in clinical trials of combined therapies
PMCID:2841696
PMID: 19798121
ISSN: 0929-1903
CID: 108426

Sindbis viral vector induced apoptosis requires translational inhibition and signaling through Mcl-1 and Bak

Venticinque, Lisa; Meruelo, Daniel
ABSTRACT: BACKGROUND: Sindbis viral vectors are able to efficiently target and kill tumor cells in vivo, as shown using pancreatic and ovarian cancer models. Infection results in apoptosis both in vitro and in vivo. Sindbis vector uptake is mediated by the LAMR, which is upregulated on a number of different tumor types, thus conferring specificity of the vector to a wide range of cancers. In this study we elucidate the mechanism of apoptosis in two tumor cell lines, MOSEC, derived from the ovarian epithelium and Pan02, derived from a pancreatic adenocarcinoma. A comprehensive understanding of the mechanism of apoptosis would facilitate the design of more effective vectors for cancer therapy. RESULTS: The initial phase of Sindbis vector induced apoptosis in MOSEC and Pan02 models reconfirms that viral infection is sensed by PKR due to double-stranded RNA intermediates associated with genomic replication. PKR activation results in translation inhibition through eIF2alpha phosphorylation and initiation of the stress response. Our studies indicate that the roles of two proteins, Mcl-1 and JNK, intimately link Sindbis induced translational arrest and cellular stress. Translational arrest inhibits the synthesis of anti-apoptotic Bcl-2 protein, Mcl-1. JNK activation triggers the release of Bad from 14-3-3, which ultimately results in apoptosis. These signals from translational arrest and cellular stress are propagated to the mitochondria where Bad and Bik bind to Bcl-xl and Mcl-1 respectively. Formation of these heterodimers displaces Bak, which results in caspase 9 cleavage and signaling through the mitochondrial pathway of apoptosis. CONCLUSION: The host cell response to Sindbis is triggered through PKR activation. Our studies demonstrate that PKR activation and subsequent translational arrest is linked to both cellular stress and apoptosis. We have also found the linkage point between translational arrest and apoptosis to be Mcl-1, a protein whose constant translation is required for inhibition of apoptosis. With this information vectors can be designed, which express or repress proteins implicated in this study, to enhance their therapeutic potential
PMCID:2843653
PMID: 20152035
ISSN: 1476-4598
CID: 108791

Multiple functions of the 37/67-kd laminin receptor make it a suitable target for novel cancer gene therapy

Scheiman, Jonathan; Tseng, Jen-Chieh; Zheng, Yun; Meruelo, Daniel
The 37/67-kd laminin receptor, LAMR, is a multifunctional protein that associates with the 40S ribosomal subunit and also localizes to the cell membrane to interact with the extracellular matrix. LAMR is overexpressed in many types of cancer, playing important roles in tumor-cell migration and invasion. Here, we show that LAMR is also vital for tumor-cell proliferation, survival, and protein translation. Small-interfering RNA (siRNA)-mediated reduction in expression of LAMR leads to G1 phase cell-cycle arrest in vitro by altering cyclins A2/B1, cyclin-dependent kinases (CDKs) 1/2, Survivin, and p21 expression levels. In vivo, reduction in LAMR expression results in inhibition of HT1080 cells to develop tumors. We also found that LAMR's ribosomal functions are critical for translation as reduction in LAMR expression leads to a dramatic decrease in newly synthesized proteins. Further, cells with lower expression of LAMR have fewer 40S subunits and 80S monosomes, causing an increase in free 60S ribosomal subunits. These results indicate that LAMR is able to regulate tumor development in many ways; further enhancing its potential as a target for gene therapy. To test this, we developed a novel Sindbis/Lenti pseudotype vector carrying short-hairpin RNA (shRNA) designed against lamr. This pseudotype vector effectively reduces LAMR expression and specifically targets tumors in vivo. Treatment of tumor-bearing severe combine immunodeficient (SCID) mice with this pseudotype vector significantly inhibits tumor growth. Thus, we show that LAMR can be used as a target in novel therapy for tumor reduction and elimination
PMCID:2839218
PMID: 19724263
ISSN: 1525-0024
CID: 106089

Extraribosomal functions associated with the C terminus of the 37/67 kDa laminin receptor are required for maintaining cell viability

Scheiman, J; Jamieson, K V; Ziello, J; Tseng, J-C; Meruelo, D
The 37/67 kDa laminin receptor (LAMR) is a multifunctional protein, acting as an extracellular receptor, localizing to the nucleus, and playing roles in rRNA processing and ribosome assembly. LAMR is important for cell viability; however, it is unclear which of its functions are essential. We developed a silent mutant LAMR construct, resistant to siRNA, to rescue the phenotypic effects of knocking down endogenous LAMR, which include inhibition of protein synthesis, cell cycle arrest, and apoptosis. In addition, we generated a C-terminal-truncated silent mutant LAMR construct structurally homologous to the Archaeoglobus fulgidus S2 ribosomal protein and missing the C-terminal 75 residues of LAMR, which displays more sequence divergence. We found that HT1080 cells stably expressing either silent mutant LAMR construct still undergo arrest in the G1 phase of the cell cycle when treated with siRNA. However, the expression of full-length silent mutant LAMR rescues cell viability, whereas the expression of the C-terminal-truncated LAMR does not. Interestingly, we also found that both silent mutant constructs restore protein translation and localize to the nucleus. Our findings indicate that the ability of LAMR to regulate viability is associated with its C-terminal 75 residues. Furthermore, this function is distinct from its role in cell proliferation, independent of its ribosomal functions, and may be regulated by a nonnuclear localization
PMCID:3019570
PMID: 21243100
ISSN: 2041-4889
CID: 138316

CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia

Buonamici, Silvia; Trimarchi, Thomas; Ruocco, Maria Grazia; Reavie, Linsey; Cathelin, Severine; Mar, Brenton G; Klinakis, Apostolos; Lukyanov, Yevgeniy; Tseng, Jen-Chieh; Sen, Filiz; Gehrie, Eric; Li, Mengling; Newcomb, Elizabeth; Zavadil, Jiri; Meruelo, Daniel; Lipp, Martin; Ibrahim, Sherif; Efstratiadis, Argiris; Zagzag, David; Bromberg, Jonathan S; Dustin, Michael L; Aifantis, Iannis
T-cell acute lymphoblastic leukaemia (T-ALL) is a blood malignancy afflicting mainly children and adolescents. T-ALL patients present at diagnosis with increased white cell counts and hepatosplenomegaly, and are at an increased risk of central nervous system (CNS) relapse. For that reason, T-ALL patients usually receive cranial irradiation in addition to intensified intrathecal chemotherapy. The marked increase in survival is thought to be worth the considerable side-effects associated with this therapy. Such complications include secondary tumours, neurocognitive deficits, endocrine disorders and growth impairment. Little is known about the mechanism of leukaemic cell infiltration of the CNS, despite its clinical importance. Here we show, using T-ALL animal modelling and gene-expression profiling, that the chemokine receptor CCR7 (ref. 5) is the essential adhesion signal required for the targeting of leukaemic T-cells into the CNS. Ccr7 gene expression is controlled by the activity of the T-ALL oncogene Notch1 and is expressed in human tumours carrying Notch1-activating mutations. Silencing of either CCR7 or its chemokine ligand CCL19 (ref. 6) in an animal model of T-ALL specifically inhibits CNS infiltration. Furthermore, murine CNS-targeting by human T-ALL cells depends on their ability to express CCR7. These studies identify a single chemokine-receptor interaction as a CNS 'entry' signal, and open the way for future pharmacological targeting. Targeted inhibition of CNS involvement in T-ALL could potentially decrease the intensity of CNS-targeted therapy, thus reducing its associated short- and long-term complications
PMCID:3750496
PMID: 19536265
ISSN: 1476-4687
CID: 105354

Controlled propagation of replication-competent Sindbis viral vector using suicide gene strategy

Tseng, J-C; Daniels, G; Meruelo, D
A major concern of using viral gene therapy is the potential for uncontrolled vector propagation and infection that might result in serious deleterious effects. To enhance the safety, several viral vectors, including vectors based on Sindbis virus, were engineered to lose their capability to replicate and spread after transduction of target cells. Such designs, however, could dramatically reduce the therapeutic potency of the viral vectors, resulting in the need for multiple dosages to achieve treatment goals. Earlier, we showed that a replication-defective (RD) Sindbis vector achieved specific tumor targeting without any adverse effects in vivo. Here, we present a replication-competent Sindbis viral vector that has an hsvtk suicide gene incorporated into ns3, an indispensable non-structural gene for viral survival. The capability of viral propagation significantly increases tumor-specific infection and enhances growth suppression of tumor compared with the conventional RD vectors. Furthermore, in the presence of the prodrug ganciclovir, the hsvtk suicide gene serves as a safety mechanism to prevent uncontrolled vector propagation. In addition to suppressing vector propagation, toxic metabolites, generated by prodrug activation, could spread to neighboring uninfected tumor cells to further enhance tumor killing
PMID: 18818670
ISSN: 1476-5462
CID: 105914

Crystal structure of the human laminin receptor precursor

Jamieson, Kelly V; Wu, Jinhua; Hubbard, Stevan R; Meruelo, Daniel
The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR
PMID: 18063583
ISSN: 0021-9258
CID: 76763