Try a new search

Format these results:

Searched for:



Total Results:


Control of transcription elongation and DNA repair by alarmone ppGpp

Weaver, Jacob W; Proshkin, Sergey; Duan, Wenqian; Epshtein, Vitaly; Gowder, Manjunath; Bharati, Binod K; Afanaseva, Elena; Mironov, Alexander; Serganov, Alexander; Nudler, Evgeny
Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.
PMID: 36997761
ISSN: 1545-9985
CID: 5463412

Publisher Correction: Dietary thiols accelerate aging of C. elegans

Gusarov, Ivan; Shamovsky, Ilya; Pani, Bibhusita; Gautier, Laurent; Eremina, Svetlana; Katkova-Zhukotskaya, Olga; Mironov, Alexander; Makarov, Alexander А; Nudler, Evgeny
PMID: 34873162
ISSN: 2041-1723
CID: 5110162

Dietary thiols accelerate aging of C. elegans

Gusarov, Ivan; Shamovsky, Ilya; Pani, Bibhusita; Gautier, Laurent; Eremina, Svetlana; Katkova-Zhukotskaya, Olga; Mironov, Alexander; Makarov, Alexander А; Nudler, Evgeny
Glutathione (GSH) is the most abundant cellular antioxidant. As reactive oxygen species (ROS) are widely believed to promote aging and age-related diseases, and antioxidants can neutralize ROS, it follows that GSH and its precursor, N-acetyl cysteine (NAC), are among the most popular dietary supplements. However, the long- term effects of GSH or NAC on healthy animals have not been thoroughly investigated. We employed C. elegans to demonstrate that chronic administration of GSH or NAC to young or aged animals perturbs global gene expression, inhibits skn-1-mediated transcription, and accelerates aging. In contrast, limiting the consumption of dietary thiols, including those naturally derived from the microbiota, extended lifespan. Pharmacological GSH restriction activates the unfolded protein response and increases proteotoxic stress resistance in worms and human cells. It is thus advantageous for healthy individuals to avoid excessive dietary antioxidants and, instead, rely on intrinsic GSH biosynthesis, which is fine-tuned to match the cellular redox status and to promote homeostatic ROS signaling.
PMID: 34267196
ISSN: 2041-1723
CID: 4937562

Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance

Shatalin, Konstantin; Nuthanakanti, Ashok; Kaushik, Abhishek; Shishov, Dmitry; Peselis, Alla; Shamovsky, Ilya; Pani, Bibhusita; Lechpammer, Mirna; Vasilyev, Nikita; Shatalina, Elena; Rebatchouk, Dmitri; Mironov, Alexander; Fedichev, Peter; Serganov, Alexander; Nudler, Evgeny
Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.
PMID: 34112687
ISSN: 1095-9203
CID: 4900242

Pre-termination Transcription Complex: Structure and Function

Hao, Zhitai; Epshtein, Vitaly; Kim, Kelly H; Proshkin, Sergey; Svetlov, Vladimir; Kamarthapu, Venu; Bharati, Binod; Mironov, Alexander; Walz, Thomas; Nudler, Evgeny
Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates. Prior to interacting with RNA, Rho forms a specific "pre-termination complex" (PTC) with RNAP and elongation factors NusA and NusG, which stabilize the PTC. RNA exiting RNAP interacts with NusA before entering the central channel of Rho from the distal C-terminal side of the ring. We map the principal interactions in the PTC and demonstrate their critical role in termination. Our results support a mechanism in which the formation of a persistent PTC is a prerequisite for termination.
PMID: 33296676
ISSN: 1097-4164
CID: 4751682

CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides

Mironov, Alexander; Seregina, Tatyana; Shatalin, Konstantin; Nagornykh, Maxim; Shakulov, Rustem; Nudler, Evgeny
l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in Escherichia coli the component of cytochrome bd-I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the cydD phenotype, unlike that of the bona fide l-cysteine exporter eamA, parallels that of the l-cystine importer tcyP. Chromosomal induction of eamA, but not of cydDC, from a strong pLtetO-1 promoter (Ptet) leads to the increased level of extracellular l-cysteine, whereas induction of cydDC or tcyP causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of cydD renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of cydDC sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by eamA overexpression. Furthermore, inactivation of the ferric uptake regulator (fur) in Ptet-cydDC or Ptet-tcyP cells results in dramatic loss of survival, whereas catalase (katG) overexpression suppresses the hypersensitivity of both strains to H2O2 These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.
PMID: 32900959
ISSN: 1091-6490
CID: 4622762

Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress

Gusarov, Ivan; Pani, Bibhusita; Gautier, Laurent; Smolentseva, Olga; Eremina, Svetlana; Shamovsky, Ilya; Katkova-Zhukotskaya, Olga; Mironov, Alexander; Nudler, Evgeny
A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging.
PMID: 28627510
ISSN: 2041-1723
CID: 2603802

Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli

Mironov, Alexander; Seregina, Tatyana; Nagornykh, Maxim; Luhachack, Lyly G; Korolkova, Natalya; Lopes, Liubov Errais; Kotova, Vera; Zavilgelsky, Gennady; Shakulov, Rustem; Shatalin, Konstantin; Nudler, Evgeny
Endogenous hydrogen sulfide (H2S) renders bacteria highly resistant to oxidative stress, but its mechanism remains poorly understood. Here, we report that 3-mercaptopyruvate sulfurtransferase (3MST) is the major source of endogenous H2S in Escherichia coli Cellular resistance to H2O2 strongly depends on the activity of mstA, a gene that encodes 3MST. Deletion of the ferric uptake regulator (Fur) renders mstA cells hypersensitive to H2O2 Conversely, induction of chromosomal mstA from a strong pLtetO-1 promoter (P tet -mstA) renders fur cells fully resistant to H2O2 Furthermore, the endogenous level of H2S is reduced in fur or sodA sodB cells but restored after the addition of an iron chelator dipyridyl. Using a highly sensitive reporter of the global response to DNA damage (SOS) and the TUNEL assay, we show that 3MST-derived H2S protects chromosomal DNA from oxidative damage. We also show that the induction of the CysB regulon in response to oxidative stress depends on 3MST, whereas the CysB-regulated l-cystine transporter, TcyP, plays the principle role in the 3MST-mediated generation of H2S. These findings led us to propose a model to explain the interplay between l-cysteine metabolism, H2S production, and oxidative stress, in which 3MST protects E. coli against oxidative stress via l-cysteine utilization and H2S-mediated sequestration of free iron necessary for the genotoxic Fenton reaction.
PMID: 28533366
ISSN: 1091-6490
CID: 2574702

ppGpp couples transcription to DNA repair in E. coli

Kamarthapu, Venu; Epshtein, Vitaly; Benjamin, Bradley; Proshkin, Sergey; Mironov, Alexander; Cashel, Michael; Nudler, Evgeny
The small molecule alarmone (p)ppGpp mediates bacterial adaptation to nutrient deprivation by altering the initiation properties of RNA polymerase (RNAP). ppGpp is generated in Escherichia coli by two related enzymes, RelA and SpoT. We show that ppGpp is robustly, but transiently, induced in response to DNA damage and is required for efficient nucleotide excision DNA repair (NER). This explains why relA-spoT-deficient cells are sensitive to diverse genotoxic agents and ultraviolet radiation, whereas ppGpp induction renders them more resistant to such challenges. The mechanism of DNA protection by ppGpp involves promotion of UvrD-mediated RNAP backtracking. By rendering RNAP backtracking-prone, ppGpp couples transcription to DNA repair and prompts transitions between repair and recovery states.
PMID: 27199428
ISSN: 1095-9203
CID: 2112402

Riboswitches in regulation of Rho-dependent transcription termination

Proshkin, Sergey; Mironov, Alexander; Nudler, Evgeny
Riboswitches are RNA sensors of small metabolites and ions that regulate gene expression in response to environmental changes. In bacteria, the riboswitch sensor domain usually controls the formation of a strong RNA hairpin that either functions as a potent transcription terminator or sequesters a ribosome-binding site. A recent study demonstrated a novel mechanism by which a riboswitch controls Rho-dependent transcription termination. This riboswitch mechanism is likely a widespread mode of gene regulation that determines whether a protein effector is able to attenuate transcription. This article is part of a Special Issue entitled: Riboswitches.
PMID: 24731855
ISSN: 0006-3002
CID: 1362732