Try a new search

Format these results:

Searched for:



Total Results:


Ecallantide for the treatment of hereditary angiodema in adults

Lunn, Michael; Banta, Erin
Hereditary angioedema (HAE) is a clinical disorder characterized by a deficiency of C1 esterase inhibitor (C1-INH). HAE has traditionally been divided into two subtypes. Unique among the inherited deficiencies of the complement system, HAE Types I and II are inherited as an autosomal dominant disorder. The generation of an HAE attack is caused by the depletion and/or consumption of C1-inhibitor manifested as subcutaneous or submucosal edema of the upper airway, face, extremities, or gastrointestinal tract mediated by bradykinin. Attacks can be severe and potentially life-threatening, particularly with laryngeal involvement and treatment of acute attacks in the United States has been severely limited. In December 2009 the FDA approved ecallantide for the treatment of acute HAE attacks. Ecallantide is a small recombinant protein acting as a potent, specific and reversible inhibitor of plasma kallikrein which binds to plasma kallikrein blocking its binding site, directly inhibiting the conversion of high molecular weight kininogen to bradykinin. Administered subcutaneously, ecallantide was demonstrated in two clinical trials, EDEMA3 and EDEMA4, to decrease the length and severity of acute HAE attacks. Although there is a small risk for anaphylaxis, which limits home administration, ecallantide is a novel, safe, effective and alternative treatment for acute HAE attacks.
PMID: 21695090
ISSN: 1179-5468
CID: 3427922

Recruitment of mammalian cell fibronectin to the surface of Chlamydia trachomatis

Kleba, Betsy J; Banta, Erin; Lindquist, Erika A; Stephens, Richard S
Pathogenic bacteria exploit the presence of various host cell molecules in order to colonize new tissues. Fibronectin is involved in a wide range of cell functions in vivo, and staphylococci, streptococci, and gonococci have evolved mechanisms to utilize this glycoprotein to mediate host cell binding. We show that elementary bodies (EB) from two biovars of Chlamydia trachomatis recruit fibronectin to their surfaces upon lysis of the host cell. We also demonstrate that a heparan sulfate lyase-sensitive molecule on chlamydial EB is responsible for binding at least a portion of this fibronectin.
PMID: 12065538
ISSN: 0019-9567
CID: 3427912