Try a new search

Format these results:

Searched for:

person:motold01

in-biosketch:true

Total Results:

17


Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes

Wang, Zhu; Zhou, X Edward; Motola, Daniel L; Gao, Xin; Suino-Powell, Kelly; Conneely, Aoife; Ogata, Craig; Sharma, Kamalesh K; Auchus, Richard J; Lok, James B; Hawdon, John M; Kliewer, Steven A; Xu, H Eric; Mangelsdorf, David J
Nematode parasitism is a worldwide health problem resulting in malnutrition and morbidity in over 1 billion people. The molecular mechanisms governing infection are poorly understood. Here, we report that an evolutionarily conserved nuclear hormone receptor signaling pathway governs development of the stage 3 infective larvae (iL3) in several nematode parasites, including Strongyloides stercoralis, Ancylostoma spp., and Necator americanus. As in the free-living Caenorhabditis elegans, steroid hormone-like dafachronic acids induced recovery of the dauer-like iL3 in parasitic nematodes by activating orthologs of the nuclear receptor DAF-12. Moreover, administration of dafachronic acid markedly reduced the pathogenic iL3 population in S. stercoralis, indicating the potential use of DAF-12 ligands to treat disseminated strongyloidiasis. To understand the pharmacology of targeting DAF-12, we solved the 3-dimensional structure of the S. stercoralis DAF-12 ligand-binding domain cocrystallized with dafachronic acids. These results reveal the molecular basis for DAF-12 ligand binding and identify nuclear receptors as unique therapeutic targets in parasitic nematodes.
PMCID:2695123
PMID: 19497877
ISSN: 1091-6490
CID: 2162762

Synthesis and activity of dafachronic acid ligands for the C. elegans DAF-12 nuclear hormone receptor

Sharma, Kamalesh K; Wang, Zhu; Motola, Daniel L; Cummins, Carolyn L; Mangelsdorf, David J; Auchus, Richard J
The nuclear hormone receptor DAF-12 from Caenorhabditis elegans is activated by dafachronic acids, which derive from sterols upon oxidation by DAF-9, a cytochrome P450. DAF-12 activation is a critical checkpoint in C. elegans for acquisition of reproductive competence and for entry into adulthood rather than dauer diapause. Previous studies implicated the (25S)-Delta(7)-dafachronic acid isomer as the most potent compound, but the (25S)-Delta(4)-isomer was also identified as an activator of DAF-12. To explore the tolerance of DAF-12 for structural variations in the ligand and to enable further studies requiring large amounts of ligands for DAF-12 and homologs in other nematodes, we synthesized (25R)- and (25S)-isomers of five dafachronic acids differing in A/B-ring configurations. Both the (25S)- and (25R)-Delta(7)-dafachronic acids are potent transcriptional activators in a Gal4-transactivation assay using HEK-293 cells, with EC(50) values of 23 and 33 nm, respectively, as are (25S)- and (25R)-Delta(4)-dafachronic acids, with EC(50) values of 23 and 66 nm, respectively. The (25S)- and (25R)-Delta(5)-isomers were much less potent, with EC(50) values approaching 1000 nm, and saturated 5alpha- and 5beta-dafachronic acids showed mostly intermediate potencies. Rescue assays using daf- 9-null mutants confirmed the results from transactivation experiments, but this in vivo assay accentuated the greater potencies of the (25S)-epimers, particularly for the (25S)-Delta(7)-isomer. We conclude that DAF-12 accommodates a large range of structural variation in ligand geometry, but (25S)-Delta(7)-dafachronic acid is the most potent and probably biologically relevant isomer. Potency derives more from the A/B-ring configuration than from the stereochemistry at C-25.
PMCID:2675950
PMID: 19196833
ISSN: 1944-9917
CID: 2162772

A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling

Gerisch, Birgit; Rottiers, Veerle; Li, Dongling; Motola, Daniel L; Cummins, Carolyn L; Lehrach, Hans; Mangelsdorf, David J; Antebi, Adam
Broad aspects of Caenorhabditis elegans life history, including larval developmental timing, arrest at the dauer diapause, and longevity, are regulated by the nuclear receptor DAF-12. Endogenous DAF-12 ligands are 3-keto bile acid-like steroids, called dafachronic acids, which rescue larval defects of hormone-deficient mutants, such as daf-9/cytochrome P450 and daf-36/Rieske oxygenase, and activate DAF-12. Here we examined the effect of dafachronic acid on pathways controlling lifespan. Dafachronic acid supplementation shortened the lifespan of long-lived daf-9 mutants and abolished their stress resistance, indicating that the ligand is "proaging" in response to signals from the dauer pathways. However, the ligand extended the lifespan of germ-line ablated daf-9 and daf-36 mutants, showing that it is "antiaging" in the germ-line longevity pathway. Thus, dafachronic acid regulates C. elegans lifespan according to signaling state. These studies provide key evidence that bile acid-like steroids modulate aging in animals.
PMCID:1821127
PMID: 17360327
ISSN: 0027-8424
CID: 2162782

Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase

Rottiers, Veerle; Motola, Daniel L; Gerisch, Birgit; Cummins, Carolyn L; Nishiwaki, Kiyoji; Mangelsdorf, David J; Antebi, Adam
C. elegans diapause, gonadal outgrowth, and life span are regulated by a lipophilic hormone, which serves as a ligand to the nuclear hormone receptor DAF-12. A key step in hormone production is catalyzed by the CYP450 DAF-9, but the extent of the biosynthetic pathway is unknown. Here, we identify a conserved Rieske-like oxygenase, DAF-36, as a component in hormone metabolism. Mutants display larval developmental and adult aging phenotypes, as well as patterns of epistasis similar to that of daf-9. Larval phenotypes are potently reversed by crude lipid extracts, 7-dehydrocholesterol, and a recently identified DAF-12 sterol ligand, suggesting that DAF-36 works early in the hormone biosynthetic pathway. DAF-36 is expressed primarily within the intestine, a major organ of metabolic and endocrine control, distinct from DAF-9. These results imply that C. elegans hormone production has multiple steps and is distributed, and that it may provide one way that tissues register their current physiological state during organismal commitments.
PMID: 16563875
ISSN: 1534-5807
CID: 2162792

Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans

Motola, Daniel L; Cummins, Carolyn L; Rottiers, Veerle; Sharma, Kamalesh K; Li, Tingting; Li, Yong; Suino-Powell, Kelly; Xu, H Eric; Auchus, Richard J; Antebi, Adam; Mangelsdorf, David J
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
PMID: 16529801
ISSN: 0092-8674
CID: 2162802

Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4

Ge, Hongfei; Yang, Guoqing; Huang, Lu; Motola, Daniel L; Pourbahrami, Tiffany; Li, Cai
Angiopoietin-like protein 4 (Angptl4) is a recently identified circulating protein expressed primarily in adipose tissue and liver. Also known as peroxisome proliferator-activated receptor (PPAR)-gamma angiopoietin-related, fasting induced adipose factor, and hepatic fibrinogen/angiopoietin-related protein, recombinant Angptl4 causes increase of plasma very low density lipoprotein levels by inhibition of lipoprotein lipase activity. Similar to angiopoietins and other angiopoietin-like proteins, Angptl4 contains an amino-terminal coiled-coil domain and a carboxyl-terminal fibrinogen-like domain. We report here that Angptl4 is evolutionarily conserved among several mammalian species and that full-length Angptl4 protein is an oligomer containing intermolecular disulfide bonds. Oligomerized Angptl4 undergoes proteolytic processing to release its carboxyl fibrinogen-like domain, which circulates as a monomer. Angptl4's N-terminal coiled-coil domain mediates its oligomerization, which by itself is sufficient to form higher order oligomeric structure. Adenovirus-mediated overexpression of Angptl4 in 293 cells shows that conversion of full-length, oligomerized Angptl4 is mediated by a cell-associated protease activity induced by serum. These findings demonstrate a novel property of angiopoietin-like proteins and suggest that oligomerization and proteolytic processing of Angptl4 may regulate its biological activities in vivo.
PMID: 14570927
ISSN: 0021-9258
CID: 2162812

De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase

Cheng, Jeffrey B; Motola, Daniel L; Mangelsdorf, David J; Russell, David W
The conversion of vitamin D into an active ligand for the vitamin D receptor requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney. Mitochondrial and microsomal vitamin D 25-hydroxylase enzymes catalyze the first reaction. The mitochondrial activity is associated with sterol 27-hydroxylase, a cytochrome P450 (CYP27A1); however, the identity of the microsomal enzyme has remained elusive. A cDNA library prepared from hepatic mRNA of sterol 27-hydroxylase-deficient mice was screened with a ligand activation assay to identify an evolutionarily conserved microsomal cytochrome P450 (CYP2R1) with vitamin D 25-hydroxylase activity. Expression of CYP2R1 in cells led to the transcriptional activation of the vitamin D receptor when either vitamin D2 or D3 was added to the medium. Thin layer chromatography and radioimmunoassays indicated that the secosteroid product of CYP2R1 was 25-hydroxyvitamin D3. Co-expression of CYP2R1 with vitamin D 1alpha-hydroxylase (CYP27B1) elicited additive activation of vitamin D3, whereas co-expression with vitamin D 24-hydroxylase (CYP24A1) caused inactivation. CYP2R1 mRNA is abundant in the liver and testis, and present at lower levels in other tissues. The data suggest that CYP2R1 is a strong candidate for the microsomal vitamin D 25-hydroxylase.
PMCID:4450819
PMID: 12867411
ISSN: 0021-9258
CID: 2162822