Try a new search

Format these results:

Searched for:



Total Results:


Low incidence and transient elevation of autoantibodies post mRNA COVID-19 vaccination in inflammatory arthritis

Blank, Rebecca B; Haberman, Rebecca H; Qian, Kun; Samanovic, Marie; Castillo, Rochelle; Jimenez Hernandez, Anthony; Vasudevapillai Girija, Parvathy; Catron, Sydney; Uddin, Zakwan; Rackoff, Paula; Solomon, Gary; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya; Mulligan, Mark J; Hu, Jiyuan; Scher, Jose U
OBJECTIVES/OBJECTIVE:Autoantibody seroconversion has been extensively studied in the context of COVID-19 infection but data regarding post-vaccination autoantibody production is lacking. Here we aimed to determine the incidence of common autoantibody formation following mRNA COVID-19 vaccines in patients with inflammatory arthritis (IA) and in healthy controls. METHODS:Autoantibody seroconversion was measured by serum ELISA in a longitudinal cohort of IA participants and healthy controls before and after COVID-19 mRNA-based immunization. RESULTS:Overall, there was a significantly lower incidence of ANA seroconversion in participants who did not contract COVID-19 prior to vaccination compared with those who been previously infected (7.4% vs 24.1%, p= 0.014). Incidence of de novo anti-cyclic citrullinated protein (CCP) seroconversion in all participants was low at 4.9%. Autoantibody levels were typically of low titer, transient, and not associated with increase in IA flares. CONCLUSIONS:In both health and inflammatory arthritis, the risk of autoantibody seroconversion is lower following mRNA-based immunization than following natural SARS-CoV-2 infection. Importantly, seroconversion does not correlate with self-reported IA disease flare risk, further supporting the encouragement of mRNA-based COVID-19 immunization in the IA population.
PMID: 35640110
ISSN: 1462-0332
CID: 5235902

Efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections associated with low procalcitonin: a randomised, placebo-controlled, double-blind, non-inferiority trial

Tsalik, Ephraim L; Rouphael, Nadine G; Sadikot, Ruxana T; Rodriguez-Barradas, Maria C; McClain, Micah T; Wilkins, Dana M; Woods, Christopher W; Swamy, Geeta K; Walter, Emmanuel B; El Sahly, Hana M; Keitel, Wendy A; Mulligan, Mark J; Tuyishimire, Bonifride; Serti, Elisavet; Hamasaki, Toshimitsu; Evans, Scott R; Ghazaryan, Varduhi; Lee, Marina S; Lautenbach, Ebbing
BACKGROUND:Lower respiratory tract infections are frequently treated with antibiotics, despite a viral cause in many cases. It remains unknown whether low procalcitonin concentrations can identify patients with lower respiratory tract infection who are unlikely to benefit from antibiotics. We aimed to compare the efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections in patients with low procalcitonin. METHODS:We conducted a randomised, placebo-controlled, double-blind, non-inferiority trial at five health centres in the USA. Adults aged 18 years or older with clinically suspected non-pneumonia lower respiratory tract infection and symptom duration from 24 h to 28 days were eligible for enrolment. Participants with a procalcitonin concentration of 0·25 ng/mL or less were randomly assigned (1:1), in blocks of four with stratification by site, to receive over-encapsulated oral azithromycin 250 mg or matching placebo (two capsules on day 1 followed by one capsule daily for 4 days). Participants, non-study clinical providers, investigators, and study coordinators were masked to treatment allocation. The primary outcome was efficacy of azithromycin versus placebo in terms of clinical improvement at day 5 in the intention-to-treat population. The non-inferiority margin was -12·5%. Solicited adverse events (abdominal pain, vomiting, diarrhoea, allergic reaction, or yeast infections) were recorded as a secondary outcome. This trial is registered with, NCT03341273. FINDINGS/RESULTS:Between Dec 8, 2017, and March 9, 2020, 691 patients were assessed for eligibility and 499 were enrolled and randomly assigned to receive azithromycin (n=249) or placebo (n=250). Clinical improvement at day 5 was observed in 148 (63%, 95% CI 54 to 71) of 238 participants with full data in the placebo group and 155 (69%, 61 to 77) of 227 participants with full data in the azithromycin group in the intention-to-treat analysis (between-group difference -6%, 95% CI -15 to 2). The 95% CI for the difference did not meet the non-inferiority margin. Solicited adverse events and the severity of solicited adverse events were not significantly different between groups at day 5, except for increased abdominal pain associated with azithromycin (47 [23%, 95% CI 18 to 29] of 204 participants) compared with placebo (35 [16%, 12 to 21] of 221; between-group difference -7% [95% CI -15 to 0]; p=0·066). INTERPRETATION/CONCLUSIONS:Placebo was not non-inferior to azithromycin in terms of clinical improvement at day 5 in adults with lower respiratory tract infection and a low procalcitonin concentration. After accounting for both the rates of clinical improvement and solicited adverse events at day 5, it is unclear whether antibiotics are indicated for patients with lower respiratory tract infection and a low procalcitonin concentration. FUNDING/BACKGROUND:National Institute of Allergy and Infectious Diseases, bioMérieux.
PMID: 36525985
ISSN: 1474-4457
CID: 5382572

Molecularly distinct memory CD4+ T cells are induced by SARS-CoV-2 infection and mRNA vaccination

Gray-Gaillard, Sophie L; Solis, Sabrina; Monteiro, Clarice; Chen, Han M; Ciabattoni, Grace; Samanovic, Marie I; Cornelius, Amber R; Williams, Tijaana; Geesey, Emilie; Rodriguez, Miguel; Ortigoza, Mila Brum; Ivanova, Ellie N; Koralov, Sergei B; Mulligan, Mark J; Herati, Ramin Sedaghat
UNLABELLED:Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs between these two contexts. Notable differences in humoral and cellular immune responses to primary mRNA vaccination were observed and associated with prior COVID-19 history, including in the establishment and recall of Spike-specific CD4+ T cells. It was unclear whether CD4+ T cell memory established by infection or mRNA vaccination as the first exposure to Spike was qualitatively similar. To assess whether the mechanism of initial memory T cell priming affected subsequent responses to Spike protein, 14 people who were receiving a third mRNA vaccination, referenced here as the booster, were stratified based on whether the first exposure to Spike protein was by viral infection or immunization (infection-primed or vaccine-primed). Using multimodal scRNA-seq of activation-induced marker (AIM)-reactive Spike-specific CD4+ T cells, we identified 220 differentially expressed genes between infection- and vaccine-primed patients at the post-booster time point. Infection-primed participants had greater expression of genes related to cytotoxicity and interferon signaling. Gene set enrichment analysis (GSEA) revealed enrichment for Interferon Alpha, Interferon Gamma, and Inflammatory response gene sets in Spike-specific CD4+ T cells from infection-primed individuals, whereas Spike-specific CD4+ T cells from vaccine-primed individuals had strong enrichment for proliferative pathways by GSEA. Finally, SARS-CoV-2 breakthrough infection in vaccine-primed participants resulted in subtle changes in the transcriptional landscape of Spike-specific memory CD4+ T cells relative to pre-breakthrough samples but did not recapitulate the transcriptional profile of infection-primed Spike-specific CD4+ T cells. Together, these data suggest that CD4+ T cell memory is durably imprinted by the inflammatory context of SARS-CoV-2 infection, which has implications for personalization of vaccination based on prior infection history. ONE SENTENCE SUMMARY/UNASSIGNED:SARS-CoV-2 infection and mRNA vaccination prime transcriptionally distinct CD4+ T cell memory landscapes which are sustained with subsequent doses of vaccine.
PMID: 36415470
ISSN: 2692-8205
CID: 5390872

Dose-Response of a Norovirus GII.2 Controlled Human Challenge Model Inoculum

Rouphael, Nadine; Beck, Allison; Kirby, Amy E; Liu, Pengbo; Natrajan, Muktha S; Lai, Lilin; Phadke, Varun; Winston, Juton; Raabe, Vanessa; Collins, Matthew H; Girmay, Tigisty; Alvarez, Alicarmen; Beydoun, Nour; Karmali, Vinit; Altieri-Rivera, Joanne; Lindesmith, Lisa C; Anderson, Evan J; Wang, Yuke; El-Khorazaty, Jill; Petrie, Carey; Baric, Ralph S; Baqar, Shahida; Moe, Christine L; Mulligan, Mark J
BACKGROUND:Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS:Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain Virus (SMV) GII.2 norovirus inoculum (1.2x10 4 to 1.2x10 7 genomic equivalent copies [GEC]; n=38) or placebo ( n=6). Illness was defined as diarrhea and/or vomiting post challenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV IgG seroconversion). RESULTS:The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between pre-challenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary IgA and infection. The ID50 was 5.1×10 5 GEC. CONCLUSIONS:High rates of infection and illness were observed in both secretor-positive and negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics.
PMID: 35137154
ISSN: 1537-6613
CID: 5176072

Hybrid and vaccine-induced immunity against SAR-CoV-2 in MS patients on different disease-modifying therapies

Kister, Ilya; Curtin, Ryan; Pei, Jinglan; Perdomo, Katherine; Bacon, Tamar E; Voloshyna, Iryna; Kim, Joseph; Tardio, Ethan; Velmurugu, Yogambigai; Nyovanie, Samantha; Valeria Calderon, Andrea; Dibba, Fatoumatta; Stanzin, Igda; Samanovic, Marie I; Raut, Pranil; Raposo, Catarina; Priest, Jessica; Cabatingan, Mark; Winger, Ryan C; Mulligan, Mark J; Patskovsky, Yury; Silverman, Gregg J; Krogsgaard, Michelle
OBJECTIVE:To compare "hybrid immunity" (prior COVID-19 infection plus vaccination) and post-vaccination immunity to SARS CoV-2 in MS patients on different disease-modifying therapies (DMTs) and to assess the impact of vaccine product and race/ethnicity on post-vaccination immune responses. METHODS:Consecutive MS patients from NYU MS Care Center (New York, NY), aged 18-60, who completed primary COVID-19 vaccination series ≥6 weeks previously were evaluated for SARS CoV-2-specific antibody responses with electro-chemiluminescence and multiepitope bead-based immunoassays and, in a subset, live virus immunofluorescence-based microneutralization assay. SARS CoV-2-specific cellular responses were assessed with cellular stimulation TruCulture IFNγ and IL-2 assay and, in a subset, with IFNγ and IL-2 ELISpot assays. Multivariate analyses examined associations between immunologic responses and prior COVID-19 infection while controlling for age, sex, DMT at vaccination, time-to-vaccine, and vaccine product. RESULTS:Between 6/01/2021 and 11/11/2021, 370 MS patients were recruited (mean age 40.6 years; 76% female; 53% non-White; 22% with prior infection; common DMT classes: ocrelizumab 40%; natalizumab 15%, sphingosine-1-phosphate receptor modulators 13%; and no DMT 8%). Vaccine-to-collection time was 18.7 (±7.7) weeks and 95% of patients received mRNA vaccines. In multivariate analyses, patients with laboratory-confirmed prior COVID-19 infection had significantly increased antibody and cellular post-vaccination responses compared to those without prior infection. Vaccine product and DMT class were independent predictors of antibody and cellular responses, while race/ethnicity was not. INTERPRETATION/CONCLUSIONS:Prior COVID-19 infection is associated with enhanced antibody and cellular post-vaccine responses independent of DMT class and vaccine type. There were no differences in immune responses across race/ethnic groups.
PMID: 36165097
ISSN: 2328-9503
CID: 5334142

Baricitinib versus dexamethasone for adults hospitalised with COVID-19 (ACTT-4): a randomised, double-blind, double placebo-controlled trial

Wolfe, Cameron R; Tomashek, Kay M; Patterson, Thomas F; Gomez, Carlos A; Marconi, Vincent C; Jain, Mamta K; Yang, Otto O; Paules, Catharine I; Palacios, Guillermo M Ruiz; Grossberg, Robert; Harkins, Michelle S; Mularski, Richard A; Erdmann, Nathaniel; Sandkovsky, Uriel; Almasri, Eyad; Pineda, Justino Regalado; Dretler, Alexandra W; de Castilla, Diego Lopez; Branche, Angela R; Park, Pauline K; Mehta, Aneesh K; Short, William R; McLellan, Susan L F; Kline, Susan; Iovine, Nicole M; El Sahly, Hana M; Doernberg, Sarah B; Oh, Myoung-Don; Huprikar, Nikhil; Hohmann, Elizabeth; Kelley, Colleen F; Holodniy, Mark; Kim, Eu Suk; Sweeney, Daniel A; Finberg, Robert W; Grimes, Kevin A; Maves, Ryan C; Ko, Emily R; Engemann, John J; Taylor, Barbara S; Ponce, Philip O; Larson, LuAnn; Melendez, Dante Paolo; Seibert, Allan M; Rouphael, Nadine G; Strebe, Joslyn; Clark, Jesse L; Julian, Kathleen G; de Leon, Alfredo Ponce; Cardoso, Anabela; de Bono, Stephanie; Atmar, Robert L; Ganesan, Anuradha; Ferreira, Jennifer L; Green, Michelle; Makowski, Mat; Bonnett, Tyler; Beresnev, Tatiana; Ghazaryan, Varduhi; Dempsey, Walla; Nayak, Seema U; Dodd, Lori E; Beigel, John H; Kalil, Andre C; Wahid, Lana; Walter, Emmanuel B; Belur, Akhila G; Dreyer, Grace; Patterson, Jan E; Bowling, Jason E; Dixon, Danielle O; Hewlett, Angela; Odrobina, Robert; Pupaibool, Jakrapun; Mocherla, Satish; Lazarte, Suzana; Cayabyab, Meilani; Hussein, Rezhan H; Golamari, Reshma R; Krill, Kaleigh L; Rajme, Sandra; Riska, Paul F; Zingman, Barry S; Mertz, Gregory; Sosa, Nestor; Goepfert, Paul A; Berhe, Mezgebe; Dishner, Emma; Fayed, Mohamed; Hubel, Kinsley; Martinez-Orozco, José Arturo; Bautista Felix, Nora; Elmor, Sammy T; Bechnak, Amer Ryan; Saklawi, Youssef; Van Winkle, Jason W; Zea, Diego F; Laguio-Vila, Maryrose; Walsh, Edward E; Falsey, Ann R; Carvajal, Karen; Hyzy, Robert C; Hanna, Sinan; Olbrich, Norman; Traenkner, Jessica J; Kraft, Colleen S; Tebas, Pablo; Baron, Jillian T; Levine, Corri; Nock, Joy; Billings, Joanne; Kim, Hyun; Elie-Turenne, Marie-Carmelle; Whitaker, Jennifer A; Luetkemeyer, Anne F; Dwyer, Jay; Bainbridge, Emma; Gyun Choe, Pyoeng; Kyung Kang, Chang; Jilg, Nikolaus; Cantos, Valeria D; Bhamidipati, Divya R; Nithin Gopalsamy, Srinivasa; Chary, Aarthi; Jung, Jongtak; Song, Kyoung-Ho; Kim, Hong Bin; Benson, Constance A; McConnell, Kimberly; Wang, Jennifer P; Wessolossky, Mireya; Perez, Katherine; Eubank, Taryn A; Berjohn, Catherine; Utz, Gregory C; Jackson, Patrick E H; Bell, Taison D; Haughey, Heather M; Moanna, Abeer; Cribbs, Sushma; Harrison, Telisha; Colombo, Christopher J; Schofield, Christina; Colombo, Rhonda E; Tapson, Victor F; Grein, Jonathan; Sutterwala, Fayyaz; Ince, Dilek; Winokur, Patricia L; Fung, Monica; Jang, Hannah; Wyles, David; Frank, Maria G; Sarcone, Ellen; Neumann, Henry; Viswanathan, Anand; Hochman, Sarah; Mulligan, Mark; Eckhardt, Benjamin; Carmody, Ellie; Ahuja, Neera; Nadeau, Kari; Svec, David; Macaraeg, Jeffrey C; Morrow, Lee; Quimby, Dave; Bessesen, Mary; Nicholson, Lindsay; Adams, Jill; Kumar, Princy; Lambert, Allison A; Arguinchona, Henry; Alicic, Radica Z; Saito, Sho; Ohmagari, Norio; Mikami, Ayako; Chien Lye, David; Hong Lee, Tau; Ying Chia, Po; Hsieh, Lanny; Amin, Alpesh N; Watanabe, Miki; Candiotti, Keith A; Castro, Jose G; Antor, Maria A; Lee, Tida; Lalani, Tahaniyat; Novak, Richard M; Wendrow, Andrea; Borgetti, Scott A; George, Sarah L; Hoft, Daniel F; Brien, James D; Cohen, Stuart H; Thompson, George R 3rd; Chakrabarty, Melony; Guirgis, Faheem; Davey, Richard T; Voell, Jocelyn; Strich, Jeffrey R; Lindholm, David A; Mende, Katrin; Wellington, Trevor R; Rapaka, Rekha R; Husson, Jennifer S; Levine, Andrea R; Yen Tan, Seow; Shafi, Humaira; Chien, Jaime M F; Hostler, David C; Hostler, Jordanna M; Shahan, Brian T; Adams, David H; Osinusi, Anu; Cao, Huyen; Burgess, Timothy H; Rozman, Julia; Chung, Kevin K; Nieuwoudt, Christina; El-Khorazaty, Jill A; Hill, Heather; Pettibone, Stephanie; Gettinger, Nikki; Engel, Theresa; Lewis, Teri; Wang, Jing; Deye, Gregory A; Nomicos, Effie; Pikaart-Tautges, Rhonda; Elsafy, Mohamed; Jurao, Robert; Koo, Hyung; Proschan, Michael; Yokum, Tammy; Arega, Janice; Florese, Ruth
BACKGROUND:Baricitinib and dexamethasone have randomised trials supporting their use for the treatment of patients with COVID-19. We assessed the combination of baricitinib plus remdesivir versus dexamethasone plus remdesivir in preventing progression to mechanical ventilation or death in hospitalised patients with COVID-19. METHODS:In this randomised, double-blind, double placebo-controlled trial, patients were enrolled at 67 trial sites in the USA (60 sites), South Korea (two sites), Mexico (two sites), Singapore (two sites), and Japan (one site). Hospitalised adults (≥18 years) with COVID-19 who required supplemental oxygen administered by low-flow (≤15 L/min), high-flow (>15 L/min), or non-invasive mechanical ventilation modalities who met the study eligibility criteria (male or non-pregnant female adults ≥18 years old with laboratory-confirmed SARS-CoV-2 infection) were enrolled in the study. Patients were randomly assigned (1:1) to receive either baricitinib, remdesivir, and placebo, or dexamethasone, remdesivir, and placebo using a permuted block design. Randomisation was stratified by study site and baseline ordinal score at enrolment. All patients received remdesivir (≤10 days) and either baricitinib (or matching oral placebo) for a maximum of 14 days or dexamethasone (or matching intravenous placebo) for a maximum of 10 days. The primary outcome was the difference in mechanical ventilation-free survival by day 29 between the two treatment groups in the modified intention-to-treat population. Safety analyses were done in the as-treated population, comprising all participants who received one dose of the study drug. The trial is registered with, NCT04640168. FINDINGS/RESULTS:Between Dec 1, 2020, and April 13, 2021, 1047 patients were assessed for eligibility. 1010 patients were enrolled and randomly assigned, 516 (51%) to baricitinib plus remdesivir plus placebo and 494 (49%) to dexamethasone plus remdesivir plus placebo. The mean age of the patients was 58·3 years (SD 14·0) and 590 (58%) of 1010 patients were male. 588 (58%) of 1010 patients were White, 188 (19%) were Black, 70 (7%) were Asian, and 18 (2%) were American Indian or Alaska Native. 347 (34%) of 1010 patients were Hispanic or Latino. Mechanical ventilation-free survival by day 29 was similar between the study groups (Kaplan-Meier estimates of 87·0% [95% CI 83·7 to 89·6] in the baricitinib plus remdesivir plus placebo group and 87·6% [84·2 to 90·3] in the dexamethasone plus remdesivir plus placebo group; risk difference 0·6 [95% CI -3·6 to 4·8]; p=0·91). The odds ratio for improved status in the dexamethasone plus remdesivir plus placebo group compared with the baricitinib plus remdesivir plus placebo group was 1·01 (95% CI 0·80 to 1·27). At least one adverse event occurred in 149 (30%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 179 (37%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·5% [1·6 to 13·3]; p=0·014). 21 (4%) of 503 patients in the baricitinib plus remdesivir plus placebo group had at least one treatment-related adverse event versus 49 (10%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 6·0% [2·8 to 9·3]; p=0·00041). Severe or life-threatening grade 3 or 4 adverse events occurred in 143 (28%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 174 (36%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·7% [1·8 to 13·4]; p=0·012). INTERPRETATION/CONCLUSIONS:In hospitalised patients with COVID-19 requiring supplemental oxygen by low-flow, high-flow, or non-invasive ventilation, baricitinib plus remdesivir and dexamethasone plus remdesivir resulted in similar mechanical ventilation-free survival by day 29, but dexamethasone was associated with significantly more adverse events, treatment-related adverse events, and severe or life-threatening adverse events. A more individually tailored choice of immunomodulation now appears possible, where side-effect profile, ease of administration, cost, and patient comorbidities can all be considered. FUNDING/BACKGROUND:National Institute of Allergy and Infectious Diseases.
PMID: 35617986
ISSN: 2213-2619
CID: 5249952

Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 Omicron variant

Lyke, Kirsten E; Atmar, Robert L; Islas, Clara Dominguez; Posavad, Christine M; Szydlo, Daniel; Paul Chourdhury, Rahul; Deming, Meagan E; Eaton, Amanda; Jackson, Lisa A; Branche, Angela R; El Sahly, Hana M; Rostad, Christina A; Martin, Judith M; Johnston, Christine; Rupp, Richard E; Mulligan, Mark J; Brady, Rebecca C; Frenck, Robert W; Bäcker, Martín; Kottkamp, Angelica C; Babu, Tara M; Rajakumar, Kumaravel; Edupuganti, Srilatha; Dobrzynski, David; Coler, Rhea N; Archer, Janet I; Crandon, Sonja; Zemanek, Jillian A; Brown, Elizabeth R; Neuzil, Kathleen M; Stephens, David S; Post, Diane J; Nayak, Seema U; Suthar, Mehul S; Roberts, Paul C; Beigel, John H; Montefiori, David C
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits reduced susceptibility to vaccine-induced neutralizing antibodies, requiring a boost to generate protective immunity. We assess the magnitude and short-term durability of neutralizing antibodies after homologous and heterologous boosting with mRNA and Ad26.COV2.S vaccines. All prime-boost combinations substantially increase the neutralization titers to Omicron, although the boosted titers decline rapidly within 2 months from the peak response compared with boosted titers against the prototypic D614G variant. Boosted Omicron neutralization titers are substantially higher for homologous mRNA vaccine boosting, and for heterologous mRNA and Ad26.COV2.S vaccine boosting, compared with homologous Ad26.COV2.S boosting. Homologous mRNA vaccine boosting generates nearly equivalent neutralizing activity against Omicron sublineages BA.1, BA.2, and BA.3 but modestly reduced neutralizing activity against BA.2.12.1 and BA.4/BA.5 compared with BA.1. These results have implications for boosting requirements to protect against Omicron and future variants of SARS-CoV-2. This trial was conducted under NCT04889209.
PMID: 35798000
ISSN: 2666-3791
CID: 5278372

Cellular and Humoral Immunity to SARS-CoV-2 Infection in Multiple Sclerosis Patients on Ocrelizumab and Other Disease-Modifying Therapies: A Multi-Ethnic Observational Study

Kister, Ilya; Patskovsky, Yury; Curtin, Ryan; Pei, Jinglan; Perdomo, Katherine; Rimler, Zoe; Voloshyna, Iryna; Samanovic, Marie I; Cornelius, Amber R; Velmurugu, Yogambigai; Nyovanie, Samantha; Kim, Joseph J; Tardio, Ethan; Bacon, Tamar E; Zhovtis Ryerson, Lana; Raut, Pranil; Pedotti, Rosetta; Hawker, Kathleen; Raposo, Catarina; Priest, Jessica; Cabatingan, Mark; Winger, Ryan C; Mulligan, Mark J; Krogsgaard, Michelle; Silverman, Gregg J
OBJECTIVE:The objective of this study was to determine the impact of multiple sclerosis (MS) disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. METHODS:Patients with MS aged 18 to 60 years were evaluated for anti-nucleocapsid and anti-Spike receptor-binding domain (RBD) antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture enzyme-linked immunosorbent assay (ELISA); and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS:Between January 6, 2021, and July 21, 2021, 389 patients with MS were recruited (mean age 40.3 years; 74% women; 62% non-White). Most common DMTs were ocrelizumab (OCR)-40%; natalizumab -17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. One hundred seventy-seven patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, and 47 were asymptomatic. Antibody responses were markedly attenuated in OCR compared with other groups (p ≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p = 0.03), increased in natalizumab (p <0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r = 0.45, p = 0.0002) and non-OCR (r = 0.64, p <0.0001). Immune responses did not differ by race/ethnicity. Coronavirus disease 2019 (COVID-19) clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION/CONCLUSIONS:DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and nondisabled group of patients with MS. ANN NEUROL 2022.
PMID: 35289960
ISSN: 1531-8249
CID: 5191732

Methotrexate and TNF inhibitors affect long-term immunogenicity to COVID-19 vaccination in patients with immune-mediated inflammatory disease

Haberman, Rebecca H; Um, Seungha; Axelrad, Jordan E; Blank, Rebecca B; Uddin, Zakwan; Catron, Sydney; Neimann, Andrea L; Mulligan, Mark J; Herat, Ramin Sedaghat; Hong, Simon J; Chang, Shannon; Myrtaj, Arnold; Ghiasian, Ghoncheh; Izmirly, Peter M; Saxena, Amit; Solomon, Gary; Azar, Natalie; Samuels, Jonathan; Golden, Brian D; Rackoff, Paula; Adhikari, Samrachana; Hudesman, David P; Scher, Jose U
PMID: 35403000
ISSN: 2665-9913
CID: 5218902

Increased resistance of SARS-CoV-2 Omicron variant to neutralization by vaccine-elicited and therapeutic antibodies

Tada, Takuya; Zhou, Hao; Dcosta, Belinda M; Samanovic, Marie I; Chivukula, Vidya; Herati, Ramin S; Hubbard, Stevan R; Mulligan, Mark J; Landau, Nathaniel R
BACKGROUND:SARS-CoV-2 vaccines currently authorized for emergency use have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against earlier SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant presents an obstacle both to vaccine protection and monoclonal antibody therapies. METHODS:Pseudotyped lentiviruses were incubated with serum from vaccinated and boosted donors or therapeutic monoclonal antibody and then applied to target cells. After 2 days, luciferase activity was measured in a microplate luminometer. Resistance mutations of the Omicron spike were identified using point-mutated spike protein pseudotypes and mapped onto the three-dimensional spike protein structure. FINDINGS/RESULTS:Virus with the Omicron spike protein was 26-fold resistant to neutralization by recovered donor sera and 26-34-fold resistance to Pfizer BNT162b2 and Moderna vaccine-elicited antibodies following two immunizations. A booster immunization increased neutralizing titres against Omicron. Neutralizing titres against Omicron were increased in the sera with a history of prior SARS-CoV-2 infection. Analysis of the therapeutic monoclonal antibodies showed that the Regeneron and Eli Lilly monoclonal antibodies were ineffective against the Omicron pseudotype while Sotrovimab and Evusheld were partially effective. INTERPRETATION/CONCLUSIONS:The results highlight the benefit of a booster immunization to protect against the Omicron variant and demonstrate the challenge to monoclonal antibody therapy. The decrease in neutralizing titres against Omicron suggest that much of the vaccine efficacy may rely on T cells. FUNDING/BACKGROUND:The work was funded by grants from the NIH to N.R.L. (DA046100, AI122390 and AI120898) and 55 to M.J.M. (UM1AI148574).
PMID: 35465948
ISSN: 2352-3964
CID: 5205452