Try a new search

Format these results:

Searched for:

person:nagelk01

in-biosketch:yes

Total Results:

27


Olfactory navigation in arthropods

Steele, Theresa J; Lanz, Aaron J; Nagel, Katherine I
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
PMID: 36658447
ISSN: 1432-1351
CID: 5419252

SAMPL is a high-throughput solution to study unconstrained vertical behavior in small animals

Zhu, Yunlu; Auer, Franziska; Gelnaw, Hannah; Davis, Samantha N; Hamling, Kyla R; May, Christina E; Ahamed, Hassan; Ringstad, Niels; Nagel, Katherine I; Schoppik, David
Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.
PMID: 37267107
ISSN: 2211-1247
CID: 5543482

Active antennal movements in Drosophila can tune wind encoding

Suver, Marie P; Medina, Ashley M; Nagel, Katherine I
Insects use their antennae to smell odors,1
PMID: 36731464
ISSN: 1879-0445
CID: 5420472

Olfaction: The smell stops here [Comment]

Nagel, Katherine
A recent study has shown that, in the fly Drosophila, olfactory neurons stop signaling when smells get too strong. This changes the way we think about odor encoding across concentrations.
PMID: 36854272
ISSN: 1879-0445
CID: 5448462

A neural circuit for wind-guided olfactory navigation

Matheson, Andrew M M; Lanz, Aaron J; Medina, Ashley M; Licata, Al M; Currier, Timothy A; Syed, Mubarak H; Nagel, Katherine I
To navigate towards a food source, animals frequently combine odor cues about source identity with wind direction cues about source location. Where and how these two cues are integrated to support navigation is unclear. Here we describe a pathway to the Drosophila fan-shaped body that encodes attractive odor and promotes upwind navigation. We show that neurons throughout this pathway encode odor, but not wind direction. Using connectomics, we identify fan-shaped body local neurons called h∆C that receive input from this odor pathway and a previously described wind pathway. We show that h∆C neurons exhibit odor-gated, wind direction-tuned activity, that sparse activation of h∆C neurons promotes navigation in a reproducible direction, and that h∆C activity is required for persistent upwind orientation during odor. Based on connectome data, we develop a computational model showing how h∆C activity can promote navigation towards a goal such as an upwind odor source. Our results suggest that odor and wind cues are processed by separate pathways and integrated within the fan-shaped body to support goal-directed navigation.
PMCID:9360402
PMID: 35941114
ISSN: 2041-1723
CID: 5286712

Motion vision: Pinning down motion computation in an ever-changing circuit

Nagel, Katherine
A new electrophysiological study of the Drosophila visual system, recording from columnar inputs to motion-detecting neurons, has provided new insights into the computations that underlie motion vision.
PMID: 34875241
ISSN: 1879-0445
CID: 5110192

Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons

Currier, Timothy A; Matheson, Andrew Mm; Nagel, Katherine I
The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.
PMCID:7793622
PMID: 33377868
ISSN: 2050-084x
CID: 4771002

Experience- and Context-Dependent Modulation of the Invertebrate Compass System

Currier, Timothy A; Nagel, Katherine I
How are head direction signals computed and maintained in neural circuits? In this issue of Neuron, Shiozaki et al. (2020) expand our understanding of the fly "compass" network, revealing context- and experience-dependent changes in the multiplexed encoding of head direction and steering maneuvers.
PMID: 32272068
ISSN: 1097-4199
CID: 4379002

Multisensory control of navigation in the fruit fly

Currier, Timothy A; Nagel, Katherine I
Spatial navigation is influenced by cues from nearly every sensory modality and thus provides an excellent model for understanding how different sensory streams are integrated to drive behavior. Here we review recent work on multisensory control of navigation in the model organism Drosophila melanogaster, which allows for detailed circuit dissection. We identify four modes of integration that have been described in the literature-suppression, gating, summation, and association-and describe regions of the larval and adult brain that have been implicated in sensory integration. Finally we discuss what circuit architectures might support these different forms of integration. We argue that Drosophila is an excellent model to discover these circuit and biophysical motifs.
PMID: 31841944
ISSN: 1873-6882
CID: 4243492

Encoding of Wind Direction by Central Neurons in Drosophila

Suver, Marie P; Matheson, Andrew M M; Sarkar, Sinekdha; Damiata, Matthew; Schoppik, David; Nagel, Katherine I
Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.
PMID: 30948249
ISSN: 1097-4199
CID: 3900752