Try a new search

Format these results:

Searched for:



Total Results:


Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy

Brkic, Sime; Stivala, Simona; Santopolo, Alice; Szybinski, Jakub; Jungius, Sarah; Passweg, Jakob R; Tsakiris, Dimitrios; Dirnhofer, Stefan; Hutter, Gregor; Leonards, Katharina; Lischer, Heidi E L; Dettmer, Matthias S; Neel, Benjamin G; Levine, Ross L; Meyer, Sara C
Myeloproliferative neoplasms (MPN) show dysregulated JAK2 signaling. JAK2 inhibitors provide clinical benefits, but compensatory activation of MAPK pathway signaling impedes efficacy. We hypothesized that dual targeting of JAK2 and ERK1/2 could enhance clone control and therapeutic efficacy. We employed genetic and pharmacologic targeting of ERK1/2 in Jak2V617F MPN mice, cells and patient clinical isolates. Competitive transplantations of Jak2V617F vs. wild-type bone marrow (BM) showed that ERK1/2 deficiency in hematopoiesis mitigated MPN features and reduced the Jak2V617F clone in blood and hematopoietic progenitor compartments. ERK1/2 ablation combined with JAK2 inhibition suppressed MAPK transcriptional programs, normalized cytoses and promoted clone control suggesting dual JAK2/ERK1/2 targeting as enhanced corrective approach. Combined pharmacologic JAK2/ERK1/2 inhibition with ruxolitinib and ERK inhibitors reduced proliferation of Jak2V617F cells and corrected erythrocytosis and splenomegaly of Jak2V617F MPN mice. Longer-term treatment was able to induce clone reductions. BM fibrosis was significantly decreased in MPLW515L-driven MPN to an extent not seen with JAK2 inhibitor monotherapy. Colony formation from JAK2V617F patients' CD34+ blood and BM was dose-dependently inhibited by combined JAK2/ERK1/2 inhibition in PV, ET, and MF subsets. Overall, we observed that dual targeting of JAK2 and ERK1/2 was able to enhance therapeutic efficacy suggesting a novel treatment approach for MPN.
PMID: 34480104
ISSN: 1476-5551
CID: 5011372

Combined Inhibition of SHP2 and CXCR1/2 Promotes Anti-Tumor T Cell Response in NSCLC

Tang, Kwan Ho; Li, Shuai; Khodadadi-Jamayran, Alireza; Jen, Jayu; Han, Han; Guidry, Kayla; Chen, Ting; Hao, Yuan; Fedele, Carmine; Zebala, John A; Maeda, Dean Y; Christensen, James G; Olson, Peter; Athanas, Argus; Loomis, Cynthia A; Tsirigos, Aristotelis; Wong, Kwok-Kin; Neel, Benjamin G
SHP2 inhibitors (SHP2i) alone and in various combinations are being tested in multiple tumors with over-activation of the RAS/ERK pathway. SHP2 plays critical roles in normal cell signaling; hence, SHP2is could influence the tumor microenvironment. We found that SHP2i treatment depleted alveolar and M2-like macrophages, induced tumor-intrinsic CCL5/CXCL10 secretion and promoted B and T lymphocyte infiltration in Kras- and Egfr-mutant non-small cell lung cancer (NSCLC). However, treatment also increased intratumor gMDSCs via tumor-intrinsic, NF-kB-dependent production of CXCR2 ligands. Other RAS/ERK pathway inhibitors also induced CXCR2 ligands and gMDSC influx in mice, and CXCR2 ligands were induced in tumors from patients on KRASG12C-inhibitor trials. Combined SHP2(SHP099)/CXCR1/2(SX682) inhibition depleted a specific cluster of S100a8/9high gMDSCs, generated Klrg1+ CD8+ effector T cells with a strong cytotoxic phenotype but expressing the checkpoint receptor NKG2A, and enhanced survival in Kras- and Egfr-mutant models. Our results argue for testing RAS/ERK pathway/CXCR1/2/NKG2A inhibitor combinations in NSCLC patients.
PMID: 34353854
ISSN: 2159-8290
CID: 4969352

Computational modeling of ovarian cancer dynamics suggests optimal strategies for therapy and screening

Gu, Shengqing; Lheureux, Stephanie; Sayad, Azin; Cybulska, Paulina; Hogen, Liat; Vyarvelska, Iryna; Tu, Dongsheng; Parulekar, Wendy R; Nankivell, Matthew; Kehoe, Sean; Chi, Dennis S; Levine, Douglas A; Bernardini, Marcus Q; Rosen, Barry; Oza, Amit; Brown, Myles; Neel, Benjamin G
High-grade serous tubo-ovarian carcinoma (HGSC) is a major cause of cancer-related death. Treatment is not uniform, with some patients undergoing primary debulking surgery followed by chemotherapy (PDS) and others being treated directly with chemotherapy and only having surgery after three to four cycles (NACT). Which strategy is optimal remains controversial. We developed a mathematical framework that simulates hierarchical or stochastic models of tumor initiation and reproduces the clinical course of HGSC. After estimating parameter values, we infer that most patients harbor chemoresistant HGSC cells at diagnosis and that, if the tumor burden is not too large and complete debulking can be achieved, PDS is superior to NACT due to better depletion of resistant cells. We further predict that earlier diagnosis of primary HGSC, followed by complete debulking, could improve survival, but its benefit in relapsed patients is likely to be limited. These predictions are supported by primary clinical data from multiple cohorts. Our results have clear implications for these key issues in HGSC management.
PMID: 34161278
ISSN: 1091-6490
CID: 4918462

Selective and noncovalent targeting of RAS mutants for inhibition and degradation

Teng, Kai Wen; Tsai, Steven T; Hattori, Takamitsu; Fedele, Carmine; Koide, Akiko; Yang, Chao; Hou, Xuben; Zhang, Yingkai; Neel, Benjamin G; O'Bryan, John P; Koide, Shohei
Activating mutants of RAS are commonly found in human cancers, but to date selective targeting of RAS in the clinic has been limited to KRAS(G12C) through covalent inhibitors. Here, we report a monobody, termed 12VC1, that recognizes the active state of both KRAS(G12V) and KRAS(G12C) up to 400-times more tightly than wild-type KRAS. The crystal structures reveal that 12VC1 recognizes the mutations through a shallow pocket, and 12VC1 competes against RAS-effector interaction. When expressed intracellularly, 12VC1 potently inhibits ERK activation and the proliferation of RAS-driven cancer cell lines in vitro and in mouse xenograft models. 12VC1 fused to VHL selectively degrades the KRAS mutants and provides more extended suppression of mutant RAS activity than inhibition by 12VC1 alone. These results demonstrate the feasibility of selective targeting and degradation of KRAS mutants in the active state with noncovalent reagents and provide a starting point for designing noncovalent therapeutics against oncogenic RAS mutants.
PMID: 33976200
ISSN: 2041-1723
CID: 4867382

SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations

Paccoud, Romain; Saint-Laurent, Céline; Piccolo, Enzo; Tajan, Mylène; Dortignac, Alizée; Pereira, Ophélie; Le Gonidec, Sophie; Baba, Inès; Gélineau, Adélaïde; Askia, Haoussa; Branchereau, Maxime; Charpentier, Julie; Personnaz, Jean; Branka, Sophie; Auriau, Johanna; Deleruyelle, Simon; Canouil, Mickaël; Beton, Nicolas; Salles, Jean-Pierre; Tauber, Maithé; Weill, Jacques; Froguel, Philippe; Neel, Benjamin G; Araki, Toshiyuki; Heymes, Christophe; Burcelin, Rémy; Castan, Isabelle; Valet, Philippe; Dray, Cédric; Gautier, Emmanuel L; Edouard, Thomas; Pradère, Jean-Philippe; Yart, Armelle
Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.
PMID: 33910978
ISSN: 1946-6242
CID: 4853422

Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer

Zhang, Shuang; Iyer, Sonia; Ran, Hao; Dolgalev, Igor; Gu, Shengqing; Wei, Wei; Foster, Connor J R; Loomis, Cynthia A; Olvera, Narciso; Dao, Fanny; Levine, Douglas A; Weinberg, Robert A; Neel, Benjamin G
The paucity of genetically informed, immune-competent tumor models impedes evaluation of conventional, targeted, and immune therapies. By engineering mouse fallopian tube epithelial organoids using lentiviral gene transduction and/or CRISPR/Cas9 mutagenesis, we generated multiple high grade serous tubo-ovarian carcinoma (HGSC) models exhibiting mutational combinations seen in HGSC patients. Detailed analysis of homologous recombination (HR)-proficient (Tp53-/-;Ccne1OE;Akt2OE ;KrasOE), HR-deficient (Tp53-/-;Brca1-/-;MycOE), and unclassified (Tp53-/-;Pten-/-;Nf1-/-) organoids revealed differences in in vitro properties (proliferation, differentiation, "secretome"), copy number aberrations, and tumorigenicity. Tumorigenic organoids had variable sensitivity to HGSC chemotherapeutics, evoked distinct immune microenvironments that could be modulated by neutralizing organoid-produced chemokines/cytokines. These findings enabled development of a chemotherapy/immunotherapy regimen that yielded durable, T-cell dependent responses in Tp53-/-;Ccne1OE;Akt2OE;Kras HGSC; by contrast, Tp53-/-;Pten-/-;Nf1-/- tumors failed to respond. Mouse and human HGSC models showed genotype-dependent similarities in chemosensitivity, secretome, and immune microenvironment. Genotype-informed, syngeneic organoid models could provide a platform for the rapid evaluation of tumor biology and therapeutics.
PMID: 33158842
ISSN: 2159-8290
CID: 4662952

Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy

Iyer, Sonia; Zhang, Shuang; Yucel, Simge; Horn, Heiko; Smith, Sean G; Reinhardt, Ferenc; Hoefsmit, Esmee; Assatova, Bimarzhan; Casado, Julia; Meinsohn, Marie-Charlotte; Barrasa, M Inmaculada; Bell, George W; Perez-Villatoro, Fernando; Huhtinen, Kaisa; Hynninen, Johanna; Oikkonen, Jaana; Galhenage, Pamoda M; Pathania, Shailja; Hammond, Paula T; Neel, Benjamin G; Färkkilä, Anniina; Pépin, David; Weinberg, Robert A
Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transformed murine-fallopian tube epithelial cells to phenocopy homologous recombination-deficient tumors through a combined loss of p53, Brca1, Pten, Nf1, and overexpression of Myc and p53R172H, which was contrasted to an identical model carrying wild-type Brca1. For homologous recombination-proficient tumors, we constructed genotypes combining loss of p53, and overexpression of Ccne1, Akt2, p53R172H, and driven by KRASG12V or Brd4 or Smarca4 overexpression. These lines form tumors recapitulating human disease, including genotype-driven responses to treatment, and enabled us to identify follistatin as a driver of resistance to checkpoint inhibitors. These data provide proof of concept that our models can identify new immunotherapy targets in HGSC.
PMID: 33158843
ISSN: 2159-8290
CID: 4664572

SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling

Fedele, Carmine; Li, Shuai; Teng, Kai Wen; Foster, Connor J R; Peng, David; Ran, Hao; Mita, Paolo; Geer, Mitchell J; Hattori, Takamitsu; Koide, Akiko; Wang, Yubao; Tang, Kwan Ho; Leinwand, Joshua; Wang, Wei; Diskin, Brian; Deng, Jiehui; Chen, Ting; Dolgalev, Igor; Ozerdem, Ugur; Miller, George; Koide, Shohei; Wong, Kwok-Kin; Neel, Benjamin G
KRAS is the most frequently mutated human oncogene, and KRAS inhibition has been a longtime goal. Recently, inhibitors were developed that bind KRASG12C-GDP and react with Cys-12 (G12C-Is). Using new affinity reagents to monitor KRASG12C activation and inhibitor engagement, we found that an SHP2 inhibitor (SHP2-I) increases KRAS-GDP occupancy, enhancing G12C-I efficacy. The SHP2-I abrogated RTK feedback signaling and adaptive resistance to G12C-Is in vitro, in xenografts, and in syngeneic KRASG12C-mutant pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). SHP2-I/G12C-I combination evoked favorable but tumor site-specific changes in the immune microenvironment, decreasing myeloid suppressor cells, increasing CD8+ T cells, and sensitizing tumors to PD-1 blockade. Experiments using cells expressing inhibitor-resistant SHP2 showed that SHP2 inhibition in PDAC cells is required for PDAC regression and remodeling of the immune microenvironment but revealed direct inhibitory effects on tumor angiogenesis and vascularity. Our results demonstrate that SHP2-I/G12C-I combinations confer a substantial survival benefit in PDAC and NSCLC and identify additional potential combination strategies.
PMID: 33045063
ISSN: 1540-9538
CID: 4632492

Quantitative phosphoproteomic analysis reveals involvement of PD-1 in multiple T cell functions

Tocheva, Anna S; Peled, Michael; Strazza, Marianne; Adam, Kieran R; Lerrer, Shalom; Nayak, Shruti; Azoulay-Alfaguter, Inbar; Foster, Connor J R; Philips, Elliot A; Neel, Benjamin; Ueberheide, Beatrix; Mor, Adam
Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell mediated anti-tumor immunity but many patients do not respond and a significant proportion develops inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1 triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1-targeting therapeutic approaches.
PMID: 33077516
ISSN: 1083-351x
CID: 4642072

Hyperactive CDK2 Activity in Basal-like Breast Cancer Imposes a Genome Integrity Liability that Can Be Exploited by Targeting DNA Polymerase ε

Sviderskiy, Vladislav O; Blumenberg, Lili; Gorodetsky, Elizabeth; Karakousi, Triantafyllia R; Hirsh, Nicole; Alvarez, Samantha W; Terzi, Erdem M; Kaparos, Efiyenia; Whiten, Gabrielle C; Ssebyala, Shakirah; Tonzi, Peter; Mir, Hannan; Neel, Benjamin G; Huang, Tony T; Adams, Sylvia; Ruggles, Kelly V; Possemato, Richard
Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE.
PMID: 33152268
ISSN: 1097-4164
CID: 4664322