Try a new search

Format these results:

Searched for:

person:ns147

in-biosketch:yes

Total Results:

40


Essential transcription factors for induced neuron differentiation

Lu, Congyi; Garipler, Görkem; Dai, Chao; Roush, Timothy; Salome-Correa, Jose; Martin, Alex; Liscovitch-Brauer, Noa; Mazzoni, Esteban O; Sanjana, Neville E
Neurogenins are proneural transcription factors required to specify neuronal identity. Their overexpression in human pluripotent stem cells rapidly produces cortical-like neurons with spiking activity and, because of this, they have been widely adopted for human neuron disease models. However, we do not fully understand the key downstream regulatory effectors responsible for driving neural differentiation. Here, using inducible expression of NEUROG1 and NEUROG2, we identify transcription factors (TFs) required for directed neuronal differentiation by combining expression and chromatin accessibility analyses with a pooled in vitro CRISPR-Cas9 screen targeting all ~1900 TFs in the human genome. The loss of one of these essential TFs (ZBTB18) yields few MAP2-positive neurons. Differentiated ZBTB18-null cells have radically altered gene expression, leading to cytoskeletal defects and stunted neurites and spines. In addition to identifying key downstream TFs for neuronal differentiation, our work develops an integrative multi-omics and TFome-wide perturbation platform to rapidly characterize essential TFs for the differentiation of any human cell type.
PMCID:10724217
PMID: 38102126
ISSN: 2041-1723
CID: 5589072

Genome-wide CRISPR/Cas9 screens reveal shared and cell-specific mechanisms of resistance to SHP2 inhibition

Wei, Wei; Geer, Mitchell J; Guo, Xinyi; Dolgalev, Igor; Sanjana, Neville E; Neel, Benjamin G
SHP2 (PTPN11) acts upstream of SOS1/2 to enable RAS activation. Allosteric SHP2 inhibitors (SHP2i) in the clinic prevent SHP2 activation, block proliferation of RTK- or cycling RAS mutant-driven cancers, and overcome "adaptive resistance." To identify SHP2i resistance mechanisms, we performed genome-wide CRISPR/Cas9 knockout screens on two SHP2i-sensitive cell lines, recovering genes expected to cause resistance (NF1, PTEN, CDKN1B, LZTR1, and RASA2) and novel targets (INPPL1, MAP4K5, epigenetic modifiers). We screened 14 additional lines with a focused CRISPR library targeting common "hits" from the genome-wide screens. LZTR1 deletion conferred resistance in 12/14 lines, followed by MAP4K5 (8/14), SPRED2/STK40 (6/14), and INPPL1 (5/14). INPPL1, MAP4K5, or LZTR1 deletion reactivated ERK signaling. INPPL1-mediated sensitization to SHP2i required its NPXY motif but not lipid phosphatase activity. MAP4K5 acted upstream of MEK through a kinase-dependent target(s); LZTR1 had cell-dependent effects on RIT and RAS stability. INPPL1, MAP4K5, or LZTR1 deletion also conferred SHP2i resistance in vivo. Defining the SHP2i resistance landscape could suggest effective combination approaches.
PMID: 36820830
ISSN: 1540-9538
CID: 5434002

Publisher Correction: Recurrent somatic mutations as predictors of immunotherapy response

Gajic, Zoran Z; Deshpande, Aditya; Legut, Mateusz; Imieliński, Marcin; Sanjana, Neville E
PMID: 35931739
ISSN: 2041-1723
CID: 5288392

Recurrent somatic mutations as predictors of immunotherapy response

Gajic, Zoran Z; Deshpande, Aditya; Legut, Mateusz; Imieliński, Marcin; Sanjana, Neville E
Immune checkpoint blockade (ICB) has transformed the treatment of metastatic cancer but is hindered by variable response rates. A key unmet need is the identification of biomarkers that predict treatment response. To address this, we analyzed six whole exome sequencing cohorts with matched disease outcomes to identify genes and pathways predictive of ICB response. To increase detection power, we focus on genes and pathways that are significantly mutated following correction for epigenetic, replication timing, and sequence-based covariates. Using this technique, we identify several genes (BCLAF1, KRAS, BRAF, and TP53) and pathways (MAPK signaling, p53 associated, and immunomodulatory) as predictors of ICB response and develop the Cancer Immunotherapy Response CLassifiEr (CIRCLE). Compared to tumor mutational burden alone, CIRCLE led to superior prediction of ICB response with a 10.5% increase in sensitivity and a 11% increase in specificity. We envision that CIRCLE and more broadly the analysis of recurrently mutated cancer genes will pave the way for better prognostic tools for cancer immunotherapy.
PMCID:9270330
PMID: 35803911
ISSN: 2041-1723
CID: 5270412

GENOME-SCALE SCREEN FOR SYNTHETIC DRIVERS OF T-CELL PROLIFERATION [Meeting Abstract]

Legut, M; Gajic, Z; Guarino, M; Daniloski, Z; Rahman, J; Xue, X; Lu, C; Lu, L; Mimitou, E; Hao, S; Davoli, T; Diefenbach, C; Smibert, P; Sanjana, N
The engineering of patient T-cells for adoptive cell therapies has revolutionized the treatment of several cancer types. However, further improvements are needed to increase durability and response rate. While CRISPR-based loss-of-function screens have shown promise for high-throughput identification of genes that modulate T-cell response, these methods have been limited thus far to negative regulators of T-cell functions, and raise safety concerns due to the permanent nature of genome modification. Here we identify positive T-cell regulators via overexpression of ~12,000 barcoded human open reading frames (ORFs). Using this genome-scale ORF screen, we find modulator genes that may not normally be expressed by T-cells. The top-ranked genes increased primary human T-cell proliferation, activation, and secretion of key cytokines. In addition, we developed a single-cell genomics method for high-throughput quantification of the transcriptome and surface proteome in ORF-engineered T-cells. The top-ranked ORF, lymphotoxin beta receptor (LTBR), is typically expressed by myeloid cells but absent in lymphocytes. When expressed in T-cells, LTBR induced profound transcriptional and epigenomic remodeling, resulting in an increase in T-cell stemness and effector functions, as well as resistance to apoptosis and exhaustion in chronic stimulation settings. Using mutagenesis and epistasis approaches, we demonstrated that LTBR constitutive activates the canonical NFkB pathway via ligand shortcircuiting and tonic signaling. Expression of several top-ranked genes, including LTBR, improved antigen-specific chimeric antigen receptor (CAR) T-cell responses in healthy donors and diffuse large B-cell lymphoma patients. Finally, the top-ranked genes discovered in alphabeta T-cells also improved antigen-specific responses of gammadelta T-cells, highlighting the potential for cancer-agnostic therapies. Our results provide several strategies for improving next generation T-cell therapies via induction of new synthetic cell programs
EMBASE:638055202
ISSN: 1557-7422
CID: 5251822

A genome-scale screen for synthetic drivers of T cell proliferation

Legut, Mateusz; Gajic, Zoran; Guarino, Maria; Daniloski, Zharko; Rahman, Jahan A; Xue, Xinhe; Lu, Congyi; Lu, Lu; Mimitou, Eleni P; Hao, Stephanie; Davoli, Teresa; Diefenbach, Catherine; Smibert, Peter; Sanjana, Neville E
The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer1. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions2-4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4+ and CD8+ T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF-lymphotoxin-β receptor (LTBR)-is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies5. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.
PMID: 35296855
ISSN: 1476-4687
CID: 5183922

Development of Novel CAR Therapies for Diffuse Large B-Cell Lymphoma Using Genome-Wide Overexpression Screens [Meeting Abstract]

Legut, M; Gajic, Z; Guarino, M; Mimitou, E; Hao, S; Rahman, J; Davoli, T; Smibert, P; Diefenbach, C S; Sanjana, N
Despite recent therapeutic advances in the management of non-Hodgkin lymphoma (NHL), up to 50% of patients with diffuse large B-cell lymphoma (DLBCL) relapse after first line therapy, and for DLBCL patients who relapse within 12 months after subsequent stem cell transplant (SCT), the median overall survival (OS) is 6.3 months. Recently, chimeric antigen receptor (CAR) T-cell therapy has shown remarkable activity in relapsed DLBCL with complete response (CR) rate of 40% and 54% for the two of the FDA-approved CAR T-cell products, tisagenlecleucel and axicabtagene ciloleucel, respectively. However, at a median follow-up of 18 months, only 36% of patients treated with tisagenlecleucel remained in CR; with longer follow-up for axicabtagene ciloleucel the median progression free survival (PFS) was 5.9 months. Immune escape and immune evasion are primary mechanisms of CAR-T resistance; clearly improvements are needed to increase response rate and cure. While CRISPR-based loss-of-function screens have shown promise for high-throughput identification of genes that modulate T-cell response, these methods have been limited thus far to negative regulators of T-cell functions, and raise safety concerns due to the permanent nature of genome modification. Here we identify positive T-cell regulators via overexpression of ~12,000 barcoded human open reading frames (ORFs). Using this genome-scale ORF screen, we found modulator genes which increased primary human CD4+ and CD8+ T-cell proliferation, including activation markers like CD25 and CD40L, and secretion of key cytokines like interleukin-2 and interferon-gamma. In addition, we developed a single-cell genomics method (OverCITE-seq) for high-throughput quantification of the transcriptome and surface proteome in ORF-engineered T-cells. The top-ranked ORF, lymphotoxin beta receptor (LTBR), is typically expressed in a subset of myeloid cells but absent in lymphocytes. When expressed in T-cells, LTBR induces a profound transcriptional remodelling, resulting in increased resistance to exhaustion and activation-induced apoptosis, as well as upregulation of a plethora of proinflammatory cytokines, co-stimulatory molecules and antigen presentation machinery. In order to investigate the mechanism of action of LTBR, we developed an epistasis assay which allows for simultaneous gene knockout and LTBR overexpression in primary T cells. Thus, LTBR appears to induce both canonical and non-canonical NFkB pathways - but the phenotype observed in T cells is dependent only on the former. Finally, we co-expressed several top-ranked genes, including LTBR, with FDA approved CD19-targeting CARs utilizing either 4-1BB or CD28 co-stimulatory domains. In line with previous results, co-expression of top-ranked ORFs increased proinflammatory cytokine secretion and cytotoxicity against CD19+ positive cancer cell lines. This functional improvement was also observed when top-ranked ORFs and CARs were delivered to T cells isolated from DLBCL patients as shown in Figure 1. Our results provide several strategies for improving next generation CAR T-cell therapies via induction of new synthetic cell programs which may optimize immune activation and enhance the efficacy of these important therapies, a high priority for patients with relapsed and refractory DLBCL and other lymphomas. [Formula presented] Disclosures: Mimitou: Immunai: Current Employment. Smibert: Immunai: Current Employment. Diefenbach: Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding; IMab: Research Funding; Gilead: Current equity holder in publicly-traded company; Celgene: Research Funding; AbbVie: Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Merck Sharp & Dohme: Consultancy, Honoraria, Research Funding; IGM Biosciences: Research Funding; Morphosys: Consultancy, Honoraria, Research Funding; MEI: Consultancy, Research Funding; Perlmutter Cancer Center at NYU Langone Health: Current Employment; Incyte: Research Funding; Trillium: Research Funding; Seattle Genetics: Consultancy, Honoraria, Research Funding; Genentech, Inc./ F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Research Funding. Sanjana: Qiagen: Consultancy; Vertex: Consultancy.
Copyright
EMBASE:2016079578
ISSN: 0006-4971
CID: 5098712

Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens

Liscovitch-Brauer, Noa; Montalbano, Antonino; Deng, Jiale; Méndez-Mancilla, Alejandro; Wessels, Hans-Hermann; Moss, Nicholas G; Kung, Chia-Yu; Sookdeo, Akash; Guo, Xinyi; Geller, Evan; Jaini, Suma; Smibert, Peter; Sanjana, Neville E
CRISPR screens have been used to connect genetic perturbations with changes in gene expression and phenotypes. Here we describe a CRISPR-based, single-cell combinatorial indexing assay for transposase-accessible chromatin (CRISPR-sciATAC) to link genetic perturbations to genome-wide chromatin accessibility in a large number of cells. In human myelogenous leukemia cells, we apply CRISPR-sciATAC to target 105 chromatin-related genes, generating chromatin accessibility data for ~30,000 single cells. We correlate the loss of specific chromatin remodelers with changes in accessibility globally and at the binding sites of individual transcription factors (TFs). For example, we show that loss of the H3K27 methyltransferase EZH2 increases accessibility at heterochromatic regions involved in embryonic development and triggers expression of genes in the HOXA and HOXD clusters. At a subset of regulatory sites, we also analyze changes in nucleosome spacing following the loss of chromatin remodelers. CRISPR-sciATAC is a high-throughput, single-cell method for studying the effect of genetic perturbations on chromatin in normal and disease states.
PMID: 33927415
ISSN: 1546-1696
CID: 4852202

Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus

Kasela, Silva; Daniloski, Zharko; Bollepalli, Sailalitha; Jordan, Tristan X; tenOever, Benjamin R; Sanjana, Neville E; Lappalainen, Tuuli
To date, the locus with the most robust human genetic association to COVID-19 severity is 3p21.31. Here, we integrate genome-scale CRISPR loss-of-function screens and eQTLs in diverse cell types and tissues to pinpoint genes underlying COVID-19 risk. Our findings identify SLC6A20 and CXCR6 as putative causal genes that modulate COVID-19 risk and highlight the usefulness of this integrative approach to bridge the divide between correlational and causal studies of human biology.
PMID: 34425859
ISSN: 1474-760x
CID: 4995832

Tracking cell lineages to improve research reproducibility [Letter]

Zaaijer, Sophie; Groen, Simon C; Sanjana, Neville E
PMID: 34012093
ISSN: 1546-1696
CID: 4950182