Try a new search

Format these results:

Searched for:

person:oermae01

in-biosketch:true

Total Results:

138


Predicting STA-MCA Anastomosis Success: Insights from FLOW 800 Hemodynamics [Letter]

Sangwon, Karl L; Oermann, Eric K; Nossek, Erez
PMID: 39307270
ISSN: 1878-8769
CID: 5766452

Generalizability of Kidney Transplant Data in Electronic Health Records - The Epic Cosmos Database versus the Scientific Registry of Transplant Recipients

Mankowski, Michal A; Bae, Sunjae; Strauss, Alexandra T; Lonze, Bonnie E; Orandi, Babak J; Stewart, Darren; Massie, Allan B; McAdams-DeMarco, Mara A; Oermann, Eric K; Habal, Marlena; Iturrate, Eduardo; Gentry, Sommer E; Segev, Dorry L; Axelrod, David
Developing real-world evidence from electronic health records (EHR) is vital to advance kidney transplantation (KT). We assessed the feasibility of studying KT using the Epic Cosmos aggregated EHR dataset, which includes 274 million unique individuals cared for in 238 U.S. health systems, by comparing it with the Scientific Registry of Transplant Recipients (SRTR). We identified 69,418 KT recipients transplanted between January 2014 and December 2022 in Cosmos (39.4% of all US KT transplants during this period). Demographics and clinical characteristics of recipients captured in Cosmos were consistent with the overall SRTR cohort. Survival estimates were generally comparable, although there were some differences in long-term survival. At 7 years post-transplant, patient survival was 80.4% in Cosmos and 77.8% in SRTR. Multivariable Cox regression showed consistent associations between clinical factors and mortality in both cohorts, with minor discrepancies in the associations between death and both age and race. In summary, Cosmos provides a reliable platform for KT research, allowing EHR-level clinical granularity not available with either the transplant registry or healthcare claims. Consequently, Cosmos will enable novel analyses to improve our understanding of KT management on a national scale.
PMID: 39550008
ISSN: 1600-6143
CID: 5754062

Economics and Equity of Large Language Models: Health Care Perspective

Nagarajan, Radha; Kondo, Midori; Salas, Franz; Sezgin, Emre; Yao, Yuan; Klotzman, Vanessa; Godambe, Sandip A; Khan, Naqi; Limon, Alfonso; Stephenson, Graham; Taraman, Sharief; Walton, Nephi; Ehwerhemuepha, Louis; Pandit, Jay; Pandita, Deepti; Weiss, Michael; Golden, Charles; Gold, Adam; Henderson, John; Shippy, Angela; Celi, Leo Anthony; Hogan, William R; Oermann, Eric K; Sanger, Terence; Martel, Steven
Large language models (LLMs) continue to exhibit noteworthy capabilities across a spectrum of areas, including emerging proficiencies across the health care continuum. Successful LLM implementation and adoption depend on digital readiness, modern infrastructure, a trained workforce, privacy, and an ethical regulatory landscape. These factors can vary significantly across health care ecosystems, dictating the choice of a particular LLM implementation pathway. This perspective discusses 3 LLM implementation pathways-training from scratch pathway (TSP), fine-tuned pathway (FTP), and out-of-the-box pathway (OBP)-as potential onboarding points for health systems while facilitating equitable adoption. The choice of a particular pathway is governed by needs as well as affordability. Therefore, the risks, benefits, and economics of these pathways across 4 major cloud service providers (Amazon, Microsoft, Google, and Oracle) are presented. While cost comparisons, such as on-demand and spot pricing across the cloud service providers for the 3 pathways, are presented for completeness, the usefulness of managed services and cloud enterprise tools is elucidated. Managed services can complement the traditional workforce and expertise, while enterprise tools, such as federated learning, can overcome sample size challenges when implementing LLMs using health care data. Of the 3 pathways, TSP is expected to be the most resource-intensive regarding infrastructure and workforce while providing maximum customization, enhanced transparency, and performance. Because TSP trains the LLM using enterprise health care data, it is expected to harness the digital signatures of the population served by the health care system with the potential to impact outcomes. The use of pretrained models in FTP is a limitation. It may impact its performance because the training data used in the pretrained model may have hidden bias and may not necessarily be health care-related. However, FTP provides a balance between customization, cost, and performance. While OBP can be rapidly deployed, it provides minimal customization and transparency without guaranteeing long-term availability. OBP may also present challenges in interfacing seamlessly with downstream applications in health care settings with variations in pricing and use over time. Lack of customization in OBP can significantly limit its ability to impact outcomes. Finally, potential applications of LLMs in health care, including conversational artificial intelligence, chatbots, summarization, and machine translation, are highlighted. While the 3 implementation pathways discussed in this perspective have the potential to facilitate equitable adoption and democratization of LLMs, transitions between them may be necessary as the needs of health systems evolve. Understanding the economics and trade-offs of these onboarding pathways can guide their strategic adoption and demonstrate value while impacting health care outcomes favorably.
PMID: 39541580
ISSN: 1438-8871
CID: 5753562

Hospitalization and Hospitalized Delirium Are Associated With Decreased Access to Kidney Transplantation and Increased Risk of Waitlist Mortality

Long, Jane J; Hong, Jingyao; Liu, Yi; Nalatwad, Akanksha; Li, Yiting; Ghildayal, Nidhi; Johnston, Emily A; Schwartzberg, Jordan; Ali, Nicole; Oermann, Eric; Mankowski, Michal; Gelb, Bruce E; Chanan, Emily L; Chodosh, Joshua L; Mathur, Aarti; Segev, Dorry L; McAdams-DeMarco, Mara A
BACKGROUND:Kidney transplant (KT) candidates often experience hospitalizations, increasing their delirium risk. Hospitalizations and delirium are associated with worse post-KT outcomes, yet their relationship with pre-KT outcomes is less clear. Pre-KT delirium may worsen access to KT due to its negative impact on cognition and ability to maintain overall health. METHODS:Using a prospective cohort of 2374 KT candidates evaluated at a single center (2009-2020), we abstracted hospitalizations and associated delirium records after listing via chart review. We evaluated associations between waitlist mortality and likelihood of KT with hospitalizations and hospitalized delirium using competing risk models and tested whether associations differed by gerontologic factors. RESULTS: < 0.001), with those aged ≥65 having a 61% lower likelihood of KT. CONCLUSION/CONCLUSIONS:Hospitalization and delirium are associated with worse pre-KT outcomes and have serious implications on candidates' access to KT. Providers should work to reduce preventable instances of delirium.
PMID: 39498973
ISSN: 1399-0012
CID: 5766752

ChatGPT Solving Complex Kidney Transplant Cases: A Comparative Study With Human Respondents

Mankowski, Michal A; Jaffe, Ian S; Xu, Jingzhi; Bae, Sunjae; Oermann, Eric K; Aphinyanaphongs, Yindalon; McAdams-DeMarco, Mara A; Lonze, Bonnie E; Orandi, Babak J; Stewart, Darren; Levan, Macey; Massie, Allan; Gentry, Sommer; Segev, Dorry L
INTRODUCTION/BACKGROUND:ChatGPT has shown the ability to answer clinical questions in general medicine but may be constrained by the specialized nature of kidney transplantation. Thus, it is important to explore how ChatGPT can be used in kidney transplantation and how its knowledge compares to human respondents. METHODS:We prompted ChatGPT versions 3.5, 4, and 4 Visual (4 V) with 12 multiple-choice questions related to six kidney transplant cases from 2013 to 2015 American Society of Nephrology (ASN) fellowship program quizzes. We compared the performance of ChatGPT with US nephrology fellowship program directors, nephrology fellows, and the audience of the ASN's annual Kidney Week meeting. RESULTS:Overall, ChatGPT 4 V correctly answered 10 out of 12 questions, showing a performance level comparable to nephrology fellows (group majority correctly answered 9 of 12 questions) and training program directors (11 of 12). This surpassed ChatGPT 4 (7 of 12 correct) and 3.5 (5 of 12). All three ChatGPT versions failed to correctly answer questions where the consensus among human respondents was low. CONCLUSION/CONCLUSIONS:Each iterative version of ChatGPT performed better than the prior version, with version 4 V achieving performance on par with nephrology fellows and training program directors. While it shows promise in understanding and answering kidney transplantation questions, ChatGPT should be seen as a complementary tool to human expertise rather than a replacement.
PMCID:11441623
PMID: 39329220
ISSN: 1399-0012
CID: 5714092

Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark

Link, Katherine E; Schnurman, Zane; Liu, Chris; Kwon, Young Joon Fred; Jiang, Lavender Yao; Nasir-Moin, Mustafa; Neifert, Sean; Alzate, Juan Diego; Bernstein, Kenneth; Qu, Tanxia; Chen, Viola; Yang, Eunice; Golfinos, John G; Orringer, Daniel; Kondziolka, Douglas; Oermann, Eric Karl
The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world's largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients. Using this dataset we developed Segmentation-Through-Time, a deep neural network which explicitly utilizes the longitudinal structure of the data and obtained state-of-the-art results at small (<10 mm3) metastases detection and segmentation. We also demonstrate that the monthly rate of change of brain metastases over time are strongly predictive of overall survival (HR 1.27, 95%CI 1.18-1.38). We are releasing the dataset, codebase, and model weights for other cancer researchers to build upon these results and to serve as a public benchmark.
PMCID:11408643
PMID: 39289405
ISSN: 2041-1723
CID: 5720652

The Evolution of Pediatric Spine Surgery: A Bibliometric Analysis of Publications From 1902 to 2023

Mir, Jamshaid M; Kurland, David B; Cheung, Alexander T M; Liu, Albert; Shlobin, Nathan A; Alber, Daniel; Rai, Sumedha; Jain, Vasvi; Rodriguez-Olaverri, Juan C; Anderson, Richard C E; Lau, Darryl; Kondziolka, Douglas; Oermann, Eric K
BACKGROUND AND OBJECTIVES/OBJECTIVE:Pediatric spine surgery has evolved considerably over the past century. No previous study conducted a bibliometric analysis of the corpus of pediatric spine surgery. We used big data and advanced bibliometric analyses to evaluate trends in the progression of pediatric spine surgery as a distinct field since the beginning of the 20th century. METHODS:A Web of Science query was designed to capture the representative corpus of pediatric spine literature. Statistical and bibliometric analyses were performed using various Python packages and the Bibliometrix R package. RESULTS:The collection, published from 1902 to 2023, comprised a total of 11 861 articles from 61 journals and 32 715 unique authors. The overall growth rate annually for publications was 5.08%. An upsurge in publications was seen in the 1980s, after the advent of specialty and subspecialty journals. Illustratively, over 90% of all articles pertaining to pediatric spine surgery were published in the past 3 decades. International and domestic collaboration also increased exponentially over this time period. Reference publication year spectroscopy allowed us to identify 75 articles that comprise the historical roots of modern pediatric spine surgery. There was a recent lexical evolution of topics and terms toward alignment, outcomes, and patient-centric terms. Coauthorship among under-represented groups increased since 1990, but remains low, with disparities persisting across journals. CONCLUSION/CONCLUSIONS:This comprehensive bibliometric analysis on the corpus of pediatric spine surgery offers insight into the evolving landscape of research, authorship, and publication trends over the past century. Advancements in the understanding of the natural history and technology have led the field to become increasingly outcomes focused, all of which have been fueled by pioneering authors. While diversity among authors improves, under-representation of various groups continues to persist, indicating a critical role for further outreach and promotion.
PMCID:11783662
PMID: 39959902
ISSN: 2834-4383
CID: 5866242

Assessing superficial temporal artery-middle cerebral artery anastomosis patency using FLOW 800 hemodynamics

Sangwon, Karl L; Nguyen, Matthew; Wiggan, Daniel D; Negash, Bruck; Alber, Daniel A; Liu, Xujin Chris; Liu, Albert; Rabbin-Birnbaum, Corinne; Sharashidze, Vera; Baranoski, Jacob; Raz, Eytan; Shapiro, Maksim; Rutledge, Caleb; Nelson, Peter Kim; Riina, Howard; Russin, Jonathan; Oermann, Eric K; Nossek, Erez
OBJECTIVE:The objective of this study was to investigate the use of indocyanine green videoangiography with FLOW 800 hemodynamic parameters intraoperatively during superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery to predict patency prior to anastomosis performance. METHODS:A retrospective and exploratory data analysis was conducted using FLOW 800 software prior to anastomosis to assess four regions of interest (ROIs; proximal and distal recipients and adjacent and remote gyri) for four hemodynamic parameters (speed, delay, rise time, and time to peak). Medical records were used to classify patients into flow and no-flow groups based on immediate or perioperative anastomosis patency. Hemodynamic parameters were compared using univariate and multivariate analyses. Principal component analysis was used to identify high risk of no flow (HRnf) and low risk of no flow (LRnf) groups, correlated with prospective angiographic follow-ups. Machine learning models were fitted to predict patency using FLOW 800 features, and the a posteriori effect of complication risk of those features was computed. RESULTS:A total of 39 cases underwent STA-MCA bypass surgery with complete FLOW 800 data collection. Thirty-five cases demonstrated flow after anastomosis revascularization and were compared with 4 cases with no flow after revascularization. Proximal and distal recipient speeds were significantly different between the no-flow and flow groups (proximal: 238.3 ± 120.8 and 138.5 ± 93.6, respectively [p < 0.001]; distal: 241.0 ± 117.0 and 142.1 ± 103.8, respectively [p < 0.05]). Based on principal component analysis, the HRnf group (n = 10) was characterized by high-flow speed (> 75th percentile) in all ROIs, whereas the LRnf group (n = 10) had contrasting patterns. In prospective long-term follow-up, 6 of 9 cases in the HRnf group, including the original no-flow cases, had no or low flow, whereas 8 of 8 cases in the LRnf group maintained robust flow. Machine learning models predicted patency failure with a mean F1 score of 0.930 and consistently relied on proximal recipient speed as the most important feature. Computation of posterior likelihood showed a 95.29% chance of patients having long-term patency given a lower proximal speed. CONCLUSIONS:These results suggest that a high proximal speed measured in the recipient vessel prior to anastomosis can elevate the risk of perioperative no flow and long-term reduction of flow. With an increased dataset size, continued FLOW 800-based ROI metric analysis could be used to guide intraoperative anastomosis site selection prior to anastomosis and predict patency outcome.
PMID: 39151199
ISSN: 1933-0693
CID: 5727032

Concepts and applications of digital twins in healthcare and medicine

Zhang, Kang; Zhou, Hong-Yu; Baptista-Hon, Daniel T; Gao, Yuanxu; Liu, Xiaohong; Oermann, Eric; Xu, Sheng; Jin, Shengwei; Zhang, Jian; Sun, Zhuo; Yin, Yun; Razmi, Ronald M; Loupy, Alexandre; Beck, Stephan; Qu, Jia; Wu, Joseph; ,
The digital twin (DT) is a concept widely used in industry to create digital replicas of physical objects or systems. The dynamic, bi-directional link between the physical entity and its digital counterpart enables a real-time update of the digital entity. It can predict perturbations related to the physical object's function. The obvious applications of DTs in healthcare and medicine are extremely attractive prospects that have the potential to revolutionize patient diagnosis and treatment. However, challenges including technical obstacles, biological heterogeneity, and ethical considerations make it difficult to achieve the desired goal. Advances in multi-modal deep learning methods, embodied AI agents, and the metaverse may mitigate some difficulties. Here, we discuss the basic concepts underlying DTs, the requirements for implementing DTs in medicine, and their current and potential healthcare uses. We also provide our perspective on five hallmarks for a healthcare DT system to advance research in this field.
PMCID:11368703
PMID: 39233690
ISSN: 2666-3899
CID: 5688062

Predicting hematoma expansion using machine learning: An exploratory analysis of the ATACH 2 trial

Kumar, Arooshi; Witsch, Jens; Frontera, Jennifer; Qureshi, Adnan I; Oermann, Eric; Yaghi, Shadi; Melmed, Kara R
INTRODUCTION/BACKGROUND:Hematoma expansion (HE) in patients with intracerebral hemorrhage (ICH) is a key predictor of poor prognosis and potentially amenable to treatment. This study aimed to build a classification model to predict HE in patients with ICH using deep learning algorithms without using advanced radiological features. METHODS:Data from the ATACH-2 trial (Antihypertensive Treatment of Acute Cerebral Hemorrhage) was utilized. Variables included in the models were chosen as per literature consensus on salient variables associated with HE. HE was defined as increase in either >33% or 6 mL in hematoma volume in the first 24 h. Multiple machine learning algorithms were employed using iterative feature selection and outcome balancing methods. 70% of patients were used for training and 30% for internal validation. We compared the ML models to a logistic regression model and calculated AUC, accuracy, sensitivity and specificity for the internal validation models respective models. RESULTS:[5.03-18.17] and 25.2% had HE. The best performing model across all feature selection groups and sampling cohorts was using an artificial neural network (ANN) for HE in the testing cohort with AUC 0.702 [95% CI, 0.631-0.774] with 8 hidden layer nodes The traditional logistic regression yielded AUC 0.658 [95% CI, 0.641-0.675]. All other models performed with less accuracy and lower AUC. Initial hematoma volume, time to initial CT head, and initial SBP emerged as most relevant variables across all best performing models. CONCLUSION/CONCLUSIONS:We developed multiple ML algorithms to predict HE with the ANN classifying the best without advanced radiographic features, although the AUC was only modestly better than other models. A larger, more heterogenous dataset is needed to further build and better generalize the models.
PMID: 38749281
ISSN: 1878-5883
CID: 5668632