Try a new search

Format these results:

Searched for:

person:ortiza25

in-biosketch:yes

Total Results:

16


A combination of three antioxidants decreases the impact of rural particulate pollution in Normal human keratinocytes

Ortiz, Angelica; Sun, Hong; Kluz, Thomas; Matsui, Mary S; Carle, Tiffany; Gan, David; Gordon, Terry; Gildea, Lucy; Costa, Max
OBJECTIVE:), is associated with oxidative stress, DNA damage and inflammation, leading to premature signs of skin aging. Because much of the damage results from oxidative stress, we examined the effects of a topical composition containing three antioxidants in an in vitro model system to assess the potential for amelioration of premature aging. The use of multiple antioxidants was of interest based on the typical composition of therapeutic skincare products. It is important to determine the efficacy of multiple antioxidants together and develop a short-term assay for larger scale efficacy testing. METHODS:in the presence and absence of an antioxidant mixture of resveratrol, niacinamide and GHK peptide. Endpoints related to inflammation, premature aging and carcinogenicity were monitored after 5 h of exposure and included IL-6, CXCL10, MMP-1 and NRF2. Differentially expressed genes were monitored by RNA-seq. RESULTS:and suppressed by antioxidants. CONCLUSIONS:Specific signalling pathways known to be correlated with skin inflammation and aging were examined based on their suitability for use in efficacy testing for the prevention of skin damage due to ambient hydrocarbon pollution. Endpoints examined after only 5 h of exposure provide a useful method amenable to high through-put screening. The results obtained reinforce the concept that a multiple antioxidant preparation, topically applied, may reduce pro-inflammatory signalling and cellular damage and thereby reduce premature skin aging due to exposure to rural-derived airborne pollution.
PMID: 37602524
ISSN: 1468-2494
CID: 5563382

Cadmium Activates EGFR/STAT5 Signaling to Overcome Calcium Chelation and Promote Epithelial to Mesenchymal Transition

Stavrou, Aikaterini; Ortiz, Angelica; Costa, Max
Cadmium (Cd) is a heavy metal found in cigarette smoke, as well as in air and drinking water due to agricultural and industrial activities, and it poses a health risk to the general population. Prolonged low-dose Cd exposure via inhalation or ingestion causes lung and kidney cancers in humans and in animal models. While high doses of Cd exposure are correlated with the occupational setting and are cytotoxic, low doses of Cd are mainly correlated with exposure in the general population and induce carcinogenesis. The mechanism by which Cd-exposed cells overcome calcium chelation and induce malignant transformation remains unclear. This study examines how cells exposed to low doses of Cd survive loss of E-cadherin cell-cell adhesion via activation of the epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 5 (STAT5), which work to upregulate genes associated with survival and proliferation. To demonstrate the role of Cd in EGFR/STAT5 activation, we exposed two epithelial cell lines, BEAS-2B and HEK293, to two different doses (0.4 µM and 1.6 µM) of Cadmium chloride hemipentahydrate (CdCl2·2.5H2O) that are environmentally relevant to levels of Cd found in food and cigarettes for 24 h (hours) and 9 weeks (wks). When comparing cells treated with Cd with control cells, the Cd treated cells exhibited faster proliferation; therefore, we studied activation of EGFR via the STAT5 pathway using immunofluorescence (IF) for protein expression and localization and, in addition, RT-qPCR to examine changes in EGFR/STAT5 inducible genes. Our results showed an increase in EGFR and phosphorylated EGFR (p-EGFR) protein, with 1.6 µM of Cadmium having the highest expression at both 24-hour (hr) and 9-week (wk) exposures. Moreover, the IF analysis also demonstrated an increase of STAT5 and phosphorylated STAT5 (pSTAT5) in both short-term and long-term exposure, with 0.4 µM having the highest expression at 24 h. Finally, via Western blot analysis, we showed that there was a dose-dependent decrease in E-cadherin protein expression and increased N-cadherin in cells treated with low doses of Cd. These data demonstrate that epithelial cells can overcome Cd-mediated toxicity via activation of EGFR pathway to induce cell proliferation and survival and promote epithelial to mesenchymal transition.
PMCID:9855692
PMID: 36671501
ISSN: 2218-273x
CID: 5426442

Extracellular Vesicles as Mediators of Nickel-Induced Cancer Progression

Liu, Shan; Ortiz, Angelica; Stavrou, Aikaterini; Talusan, Angela R; Costa, Max
Emerging evidence suggests that extracellular vesicles (EVs), which represent a crucial mode of intercellular communication, play important roles in cancer progression by transferring oncogenic materials. Nickel (Ni) has been identified as a human group I carcinogen; however, the underlying mechanisms governing Ni-induced carcinogenesis are still being elucidated. Here, we present data demonstrating that Ni exposure generates EVs that contribute to Ni-mediated carcinogenesis and cancer progression. Human bronchial epithelial (BEAS-2B) cells and human embryonic kidney-293 (HEK293) cells were chronically exposed to Ni to generate Ni-treated cells (Ni-6W), Ni-transformed BEAS-2B cells (Ni-3) and Ni-transformed HEK293 cells (HNi-4). The signatures of EVs isolated from Ni-6W, Ni-3, HNi-4, BEAS-2B, and HEK293 were analyzed. Compared to their respective untreated cells, Ni-6W, Ni-3, and HNi-4 released more EVs. This change in EV release coincided with increased transcription of the EV biogenesis markers CD82, CD63, and flotillin-1 (FLOT). Additionally, EVs from Ni-transformed cells had enriched protein and RNA, a phenotype also observed in other studies characterizing EVs from cancer cells. Interestingly, both epithelial cells and human umbilical vein endothelial (HUVEC) cells showed a preference for taking up Ni-altered EVs compared to EVs released from the untreated cells. Moreover, these Ni-altered EVs induced inflammatory responses in both epithelial and endothelial cells and increased the expression of coagulation markers in endothelial cells. Prolonged treatment of Ni-alerted EVs for two weeks induced the epithelial-to-mesenchymal transition (EMT) in BEAS-2B cells. This study is the first to characterize the effect of Ni on EVs and suggests the potential role of EVs in Ni-induced cancer progression.
PMCID:9785150
PMID: 36555753
ISSN: 1422-0067
CID: 5394752

Extracellular Vesicles: A Novel Tool in Nanomedicine and Cancer Treatment

Stavrou, Aikaterini; Ortiz, Angelica
Extracellular vesicles are membrane-bound vesicles released by cells to mediate intercellular communication and homeostasis. Various external stimuli as well as inherent abnormalities result in alterations in the extracellular vesicle milieu. Changes to cells result in alterations in the content of the extracellular vesicle biogenesis, which may affect proximal and distal cells encountering these altered extracellular vesicles. Therefore, the examination of changes in the extracellular vesicle signature can be used to follow disease progression, reveal possible targets to improve therapy, as well as to serve as mediators of therapy. Furthermore, recent studies have developed methods to alter the cargo of extracellular vesicles to restore normal function or deliver therapeutic agents. This review will examine how extracellular vesicles from cancer cells differ from normal cells, how these altered extracellular vesicles can contribute to cancer progression, and how extracellular vesicles can be used as a therapeutic agent to target cancer cells and cancer-associated stroma. Here we present extracellular vesicles as a novel tool in nanomedicine.
PMCID:9497055
PMID: 36139610
ISSN: 2072-6694
CID: 5335672

Targeting PARP11 to avert immunosuppression and improve CAR T therapy in solid tumors

Zhang, Hongru; Yu, Pengfei; Tomar, Vivek S; Chen, Xiangjie; Atherton, Matthew J; Lu, Zhen; Zhang, Hong-Guang; Li, Shifeng; Ortiz, Angelica; Gui, Jun; Leu, N Adrian; Yan, Fangxue; Blanco, Andres; Meyer-Ficca, Mirella L; Meyer, Ralph G; Beiting, Daniel P; Li, Jinyang; Nunez-Cruz, Selene; O'Connor, Roddy S; Johnson, Lexus R; Minn, Andy J; George, Subin S; Koumenis, Constantinos; Diehl, J Alan; Milone, Michael C; Zheng, Hui; Fuchs, Serge Y
Evasion of antitumor immunity and resistance to therapies in solid tumors are aided by an immunosuppressive tumor microenvironment (TME). We found that TME factors, such as regulatory T cells and adenosine, downregulated type I interferon receptor IFNAR1 on CD8+ cytotoxic T lymphocytes (CTLs). These events relied upon poly-ADP ribose polymerase-11 (PARP11), which was induced in intratumoral CTLs and acted as a key regulator of the immunosuppressive TME. Ablation of PARP11 prevented loss of IFNAR1, increased CTL tumoricidal activity and inhibited tumor growth in an IFNAR1-dependent manner. Accordingly, genetic or pharmacologic inactivation of PARP11 augmented the therapeutic benefits of chimeric antigen receptor T cells. Chimeric antigen receptor CTLs engineered to inactivate PARP11 demonstrated a superior efficacy against solid tumors. These findings highlight the role of PARP11 in the immunosuppressive TME and provide a proof of principle for targeting this pathway to optimize immune therapies.
PMID: 35637402
ISSN: 2662-1347
CID: 5303422

Effects of metallic elements on reproduction and development

Chapter by: De Palma, Giuseppe; Ortiz, Angelica; Apostoli, Pietro
in: Handbook on the Toxicology of Metals by
[S.l.] : Elsevier, 2021
pp. 565-592
ISBN: 9780128232927
CID: 5317142

Effects of metals on extracellular vesicle signaling

Chapter by: Liu, Shan; Costa, Max; Ortiz, Angelica
in: Handbook on the Toxicology of Metals by
[S.l.] : Elsevier, 2021
pp. 279-298
ISBN: 9780128232927
CID: 5317152

Extracellular Vesicles in Cancer Progression

Ortiz, Angelica
Cancer cells release a variety of factors that contribute to the alteration of proximal and distal tissues to promote metastasis. Recent studies have demonstrated that aggressive cancer cells release extracellular vesicles with higher protein content and in excess than extracellular vesicles isolated from patients with less aggressive disease or healthy individuals. We found that melanoma tumor-derived extracellular vesicles (TEV) downregulate type I interferon receptor subunit 1 (IFNAR1), suppress expression of the interferon stimulated gene cholesterol 25-hydroxylase (CH25H). Loss of CH25H is observed in the leukocytes from melanoma patients, which correlated with metastasis and poor survival. Similarly, mice also exhibit loss of IFNAR1 following TEV administration. Moreover, loss of CH25H increased TEV uptake and TEV-induced pre metastatic niche and lung metastasis. Use of the anti-hypertensive drug, reserpine, mimicked the effects of the CH25H product 25-hydroxycholesterol to suppress TEV uptake and TEV-mediated tumor growth, pre-metastatic niche formation, and lung metastasis. These results suggest the importance of CH25H in suppressing TEV mediate cancer progression and importance of developing strategies to suppress TEV uptake and TEV-mediated disease progression.
PMID: 34090999
ISSN: 1096-3650
CID: 4905932

Regulation of intercellular biomolecule transfer-driven tumor angiogenesis and responses to anticancer therapies

Lu, Zhen; Ortiz, Angelica; Verginadis, Ioannis I; Peck, Amy R; Zahedi, Farima; Cho, Christina; Yu, Pengfei; DeRita, Rachel M; Zhang, Hongru; Kubanoff, Ryan; Sun, Yunguang; Yaspan, Andrew T; Krespan, Elise; Beiting, Daniel P; Radaelli, Enrico; Ryeom, Sandra W; Diehl, J Alan; Rui, Hallgeir; Koumenis, Constantinos; Fuchs, Serge Y
Intercellular biomolecule transfer (ICBT) between malignant and benign cells is a major driver of tumor growth, resistance to anticancer therapies, and therapy-triggered metastatic disease. Here we characterized cholesterol 25-hydroxylase (CH25H) as a key genetic suppressor of ICBT between malignant and endothelial cells (ECs) and of ICBT-driven angiopoietin-2-dependent activation of ECs, stimulation of intratumoral angiogenesis, and tumor growth. Human CH25H was downregulated in the ECs from patients with colorectal cancer and the low levels of stromal CH25H were associated with a poor disease outcome. Knockout of endothelial CH25H stimulated angiogenesis and tumor growth in mice. Pharmacologic inhibition of ICBT by reserpine compensated for CH25H loss, elicited angiostatic effects (alone or combined with sunitinib), augmented the therapeutic effect of radio-/chemotherapy, and prevented metastatic disease induced by these regimens. We propose inhibiting ICBT to improve the overall efficacy of anticancer therapies and limit their prometastatic side effects.
PMCID:8121529
PMID: 33998600
ISSN: 1558-8238
CID: 5303402

Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis

Zhu, Yusha; Ortiz, Angelica; Costa, Max
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
PMCID:8202446
PMID: 34211338
ISSN: 1477-3163
CID: 4929192