Try a new search

Format these results:

Searched for:

person:petkoe01

in-biosketch:yes

Total Results:

163


Association of Psychiatric Disorders With Mortality Among Patients With COVID-19

Nemani, Katlyn; Li, Chenxiang; Olfson, Mark; Blessing, Esther M; Razavian, Narges; Chen, Ji; Petkova, Eva; Goff, Donald C
Importance/UNASSIGNED:To date, the association of psychiatric diagnoses with mortality in patients infected with coronavirus disease 2019 (COVID-19) has not been evaluated. Objective/UNASSIGNED:To assess whether a diagnosis of a schizophrenia spectrum disorder, mood disorder, or anxiety disorder is associated with mortality in patients with COVID-19. Design, Setting, and Participants/UNASSIGNED:This retrospective cohort study assessed 7348 consecutive adult patients for 45 days following laboratory-confirmed COVID-19 between March 3 and May 31, 2020, in a large academic medical system in New York. The final date of follow-up was July 15, 2020. Patients without available medical records before testing were excluded. Exposures/UNASSIGNED:Patients were categorized based on the following International Statistical Classification of Diseases, Tenth Revision, Clinical Modification diagnoses before their testing date: (1) schizophrenia spectrum disorders, (2) mood disorders, and (3) anxiety disorders. Patients with these diagnoses were compared with a reference group without psychiatric disorders. Main Outcomes and Measures/UNASSIGNED:Mortality, defined as death or discharge to hospice within 45 days following a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test result. Results/UNASSIGNED:Of the 26 540 patients tested, 7348 tested positive for SARS-CoV-2 (mean [SD] age, 54 [18.6] years; 3891 [53.0%] women). Of eligible patients with positive test results, 75 patients (1.0%) had a history of a schizophrenia spectrum illness, 564 (7.7%) had a history of a mood disorder, and 360 (4.9%) had a history of an anxiety disorder. After adjusting for demographic and medical risk factors, a premorbid diagnosis of a schizophrenia spectrum disorder was significantly associated with mortality (odds ratio [OR], 2.67; 95% CI, 1.48-4.80). Diagnoses of mood disorders (OR, 1.14; 95% CI, 0.87-1.49) and anxiety disorders (OR, 0.96; 95% CI, 0.65-1.41) were not associated with mortality after adjustment. In comparison with other risk factors, a diagnosis of schizophrenia ranked behind only age in strength of an association with mortality. Conclusions and Relevance/UNASSIGNED:In this cohort study of adults with SARS-CoV-2-positive test results in a large New York medical system, adults with a schizophrenia spectrum disorder diagnosis were associated with an increased risk for mortality, but those with mood and anxiety disorders were not associated with a risk of mortality. These results suggest that schizophrenia spectrum disorders may be a risk factor for mortality in patients with COVID-19.
PMID: 33502436
ISSN: 2168-6238
CID: 4767292

Extracting scalar measures from functional data with applications to placebo response

Tarpey, Thaddeus; Petkova, Eva; Ciarleglio, Adam; Ogden, Robert Todd
In controlled and observational studies, outcome measures are often observed longitudinally. Such data are difficult to compare among units directly because there is no natural ordering of curves. This is relevant not only in clinical trials, where typically the goal is to evaluate the relative efficacy of treatments on average, but also in the growing and increasingly important area of personalized medicine, where treatment decisions are optimized with respect to a relevant patient outcome. In personalized medicine, there are no methods for optimizing treatment decision rules using longitudinal outcomes, e.g., symptom trajectories, because of the lack of a natural ordering of curves. A typical practice is to summarize the longitudinal response by a scalar outcome that can then be compared across patients, treatments, etc. We describe some of the summaries that are in common use, especially in clinical trials. We consider a general summary measure (weighted average tangent slope) with weights that can be chosen to optimize specific inference depending on the application. We illustrate the methodology on a study of depression treatment, in which it is difficult to separate placebo effects from the specific effects of the antidepressant. We argue that this approach provides a better summary for estimating the benefits of an active treatment than traditional non-weighted averages.
PMCID:8313021
PMID: 34316322
ISSN: 1938-7989
CID: 4949372

Pooling Data From Individual Clinical Trials in the COVID-19 Era

Petkova, Eva; Antman, Elliott M; Troxel, Andrea B
PMID: 32717043
ISSN: 1538-3598
CID: 4540772

A global needs assessment in times of a global crisis: world psychiatry response to the COVID-19 pandemic

Kaufman, Kenneth R; Petkova, Eva; Bhui, Kamaldeep S; Schulze, Thomas G
PMID: 32250235
ISSN: 2056-4724
CID: 4377022

Air pollution and hippocampal atrophy in first episode schizophrenia

Worthington, Michelle A; Petkova, Eva; Freudenreich, Oliver; Cather, Corrine; Holt, Daphne; Bello, Iruma; Diminich, Erica; Tang, Yingying; Ardekani, Babak A; Zeng, Botao; Wu, Renrong; Fan, Xiaoduo; Zhao, Jingping; Wang, Jijun; Goff, Donald C
Air pollution has recently been linked to central nervous system (CNS) diseases, possibly mediated by inflammation and oxidative stress. Hippocampal atrophy in individuals with first episode schizophrenia (FES) has also been associated with biomarkers of inflammation and oxidative stress, whereas hippocampal atrophy was not observed in matched healthy controls with similar biomarker levels of inflammation and oxidative stress. Fine particulate matter (PM2.5), one component of air pollution, is most strongly implicated in CNS disease. The present study examined the association between PM2.5 and hippocampal volume in individuals with FES who participated in a 52-week placebo-controlled clinical trial of citalopram added to clinician-determined antipsychotic treatment at four sites in the US and China. Left hippocampal volumetric integrity (LHVI; inversely related to atrophy) was measured at baseline and week 52 using an automated highly-reliable algorithm. Mean annual PM2.5 concentrations were obtained from records compiled by the World Health Organization. The relationships between baseline LHVI and PM2.5 and change in LHVI and PM2.5 were evaluated using regression analyses. 89 participants completed imaging at baseline and 46 participants completed imaging at week 52. Mean annual PM2.5 was significantly associated with both baseline LHVI and change in LHVI after controlling for age, sex, baseline LHVI, duration of untreated psychosis and baseline antipsychotic medication dose. Air pollution may contribute to the progression of hippocampal atrophy after a first episode of illness, but these findings should be considered preliminary since other unmeasured factors may have differed between cities and contributed to the observed effect.
PMID: 32169403
ISSN: 1573-2509
CID: 4350002

A Bayesian Approach to Joint Modeling of Matrix-valued Imaging Data and Treatment Outcome with Applications to Depression Studies

Jiang, Bei; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
In this paper we propose a unified Bayesian joint modeling framework for studying association between a binary treatment outcome and a baseline matrix-valued predictor. Specifically, a joint modeling approach relating an outcome to a matrix-valued predictor through a probabilistic formulation of multilinear principal component analysis (MPCA) is developed. This framework establishes a theoretical relationship between the outcome and the matrix-valued predictor although the predictor is not explicitly expressed in the model. Simulation studies are provided showing that the proposed method is superior or competitive to other methods, such as a two-stage approach and a classical principal component regression (PCR) in terms of both prediction accuracy and estimation of association; its advantage is most notable when the sample size is small and the dimensionality in the imaging covariate is large. Finally, our proposed joint modeling approach is shown to be a very promising tool in an application exploring the association between baseline EEG data and a favorable response to treatment in a depression treatment study by achieving a substantial improvement in prediction accuracy in comparison to competing methods. This article is protected by copyright. All rights reserved.
PMID: 31529701
ISSN: 1541-0420
CID: 4089132

A single-index model with multiple-links

Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
In a regression model for treatment outcome in a randomized clinical trial, a treatment effect modifier is a covariate that has an interaction with the treatment variable, implying that the treatment efficacies vary across values of such a covariate. In this paper, we present a method for determining a composite variable from a set of baseline covariates, that can have a nonlinear association with the treatment outcome, and acts as a composite treatment effect modifier. We introduce a parsimonious generalization of the single-index models that targets the effect of the interaction between the treatment conditions and the vector of covariates on the outcome, a single-index model with multiple-links (SIMML) that estimates a single linear combination of the covariates (i.e., a single-index), with treatment-specific nonparametric link functions. The approach emphasizes a focus on the treatment-by-covariates interaction effects on the treatment outcome that are relevant for making optimal treatment decisions. Asymptotic results for estimator are obtained under possible model misspecification. A treatment decision rule based on the derived single-index is defined, and it is compared to other methods for estimating optimal treatment decision rules. An application to a clinical trial for the treatment of depression is presented.
PMCID:7441812
PMID: 32831459
ISSN: 0378-3758
CID: 4575092

Optimising treatment decision rules through generated effect modifiers: a precision medicine tutorial

Petkova, Eva; Park, Hyung; Ciarleglio, Adam; Todd Ogden, R; Tarpey, Thaddeus
This tutorial introduces recent developments in precision medicine for estimating treatment decision rules. The objective of these developments is to advance personalised healthcare by identifying an optimal treatment option for each individual patient based on each patient's characteristics. The methods detailed in this tutorial define composite variables from the patient measures that can be viewed as 'biosignatures' for differential treatment response, which we have termed 'generated effect modifiers'. In contrast to most machine learning approaches to precision medicine, these biosignatures are derived from linear and non-linear regression models and thus have the advantage of easy visualisation and ready interpretation. The methods are illustrated using examples from randomised clinical trials.
PMID: 31791433
ISSN: 2056-4724
CID: 4218142

Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease

Alldred, Melissa J; Chao, Helen M; Lee, Sang Han; Beilin, Judah; Powers, Brian E; Petkova, Eva; Strupp, Barbara J; Ginsberg, Stephen D
Choline is critical for normative function of 3 major pathways in the brain, including acetylcholine biosynthesis, being a key mediator of epigenetic regulation, and serving as the primary substrate for the phosphatidylethanolamine N-methyltransferase pathway. Sufficient intake of dietary choline is critical for proper brain function and neurodevelopment. This is especially important for brain development during the perinatal period. Current dietary recommendations for choline intake were undertaken without critical evaluation of maternal choline levels. As such, recommended levels may be insufficient for both mother and fetus. Herein, we examined the impact of perinatal maternal choline supplementation (MCS) in a mouse model of Down syndrome and Alzheimer's disease, the Ts65Dn mouse relative to normal disomic littermates, to examine the effects on gene expression within adult offspring at ∼6 and 11 mo of age. We found MCS produces significant changes in offspring gene expression levels that supersede age-related and genotypic gene expression changes. Alterations due to MCS impact every gene ontology category queried, including GABAergic neurotransmission, the endosomal-lysosomal pathway and autophagy, and neurotrophins, highlighting the importance of proper choline intake during the perinatal period, especially when the fetus is known to have a neurodevelopmental disorder such as trisomy.-Alldred, M. J., Chao, H. M., Lee, S. H., Beilin, J., Powers, B. E., Petkova, E., Strupp, B. J., Ginsberg, S. D. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.
PMID: 31180719
ISSN: 1530-6860
CID: 3929822

Effects of neonatal ethanol on cerebral cortex development through adolescence

Smiley, John F; Bleiwas, Cynthia; Masiello, Kurt; Petkova, Eva; Betz, Judith; Hui, Maria; Wilson, Donald A; Saito, Mariko
Neonatal brain lesions cause deficits in structure and function of the cerebral cortex that sometimes are not fully expressed until adolescence. To better understand the onset and persistence of changes caused by postnatal day 7 (P7) ethanol treatment, we examined neocortical cell numbers, volume, surface area and thickness from neonatal to post-adolescent ages. In control mice, total neuron number decreased from P8 to reach approximately stable levels at about P30, as expected from normal programmed cell death. Cortical thickness reached adult levels by P14, but cortical volume and surface area continued to increase from juvenile (P20-30) to post-adolescent (P54-93) ages. P7 ethanol caused a reduction of total neurons by P14, but this deficit was transient, with later ages having only small and non-significant reductions. Previous studies also reported transient neuron loss after neonatal lesions that might be partially explained by an acute acceleration of normally occurring programmed cell death. GABAergic neurons expressing parvalbumin, calretinin, or somatostatin were reduced by P14, but unlike total neurons the reductions persisted or increased in later ages. Cortical volume, surface area and thickness were also reduced by P7 ethanol. Cortical volume showed evidence of a transient reduction at P14, and then was reduced again in post-adolescent ages. The results show a developmental sequence of neonatal ethanol effects. By juvenile ages the cortex overcomes the P14 deficit of total neurons, whereas P14 GABA cell deficits persist. Cortical volume reductions were present at P14, and again in post-adolescent ages.
PMID: 31049690
ISSN: 1863-2661
CID: 3854952