Try a new search

Format these results:

Searched for:

person:philim01

in-biosketch:true

Total Results:

131


The role of KRAS splice variants in cancer biology

Nuevo-Tapioles, Cristina; Philips, Mark R
The three mammalian RAS genes (HRAS, NRAS and KRAS) encode four proteins that play central roles in cancer biology. Among them, KRAS is mutated more frequently in human cancer than any other oncogene. The pre-mRNA of KRAS is alternatively spliced to give rise to two products, KRAS4A and KRAS4B, which differ in the membrane targeting sequences at their respective C-termini. Notably, both KRAS4A and KRAS4B are oncogenic when KRAS is constitutively activated by mutation in exon 2 or 3. Whereas KRAS4B is the most studied oncoprotein, KRAS4A is understudied and until recently considered relatively unimportant. Emerging work has confirmed expression of KRAS4A in cancer and found non-overlapping functions of the splice variants. The most clearly demonstrated of these is direct regulation of hexokinase 1 by KRAS4A, suggesting that the metabolic vulnerabilities of KRAS-mutant tumors may be determined in part by the relative expression of the splice variants. The aim of this review is to address the most relevant characteristics and differential functions of the KRAS splice variants as they relate to cancer onset and progression.
PMCID:9663995
PMID: 36393833
ISSN: 2296-634x
CID: 5384892

Spontaneous hydrolysis and spurious metabolic properties of α-ketoglutarate esters

Parker, Seth J; Encarnación-Rosado, Joel; Hollinshead, Kate E R; Hollinshead, David M; Ash, Leonard J; Rossi, Juan A K; Lin, Elaine Y; Sohn, Albert S W; Philips, Mark R; Jones, Drew R; Kimmelman, Alec C
α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources.
PMCID:8361106
PMID: 34385458
ISSN: 2041-1723
CID: 4972642

Post-translational modification of RAS proteins

Campbell, Sharon L; Philips, Mark R
Mutations of RAS genes drive cancer more frequently than any other oncogene. RAS proteins integrate signals from a wide array of receptors and initiate downstream signaling through pathways that control cellular growth. RAS proteins are fundamentally binary molecular switches in which the off/on state is determined by the binding of GDP or GTP, respectively. As such, the intrinsic and regulated nucleotide-binding and hydrolytic properties of the RAS GTPase were historically believed to account for the entirety of the regulation of RAS signaling. However, it is increasingly clear that RAS proteins are also regulated by a vast array of post-translational modifications (PTMs). The current challenge is to understand what are the functional consequences of these modifications and which are physiologically relevant. Because PTMs are catalyzed by enzymes that may offer targets for drug discovery, the study of RAS PTMs has been a high priority for RAS biologists.
PMID: 34365229
ISSN: 1879-033x
CID: 5006062

Targeting KRAS4A splicing through the RBM39/DCAF15 pathway inhibits cancer stem cells

Chen, Wei-Ching; To, Minh D; Westcott, Peter M K; Delrosario, Reyno; Kim, Il-Jin; Philips, Mark; Tran, Quan; Bollam, Saumya R; Goodarzi, Hani; Bayani, Nora; Mirzoeva, Olga; Balmain, Allan
The commonly mutated human KRAS oncogene encodes two distinct KRAS4A and KRAS4B proteins generated by differential splicing. We demonstrate here that coordinated regulation of both isoforms through control of splicing is essential for development of Kras mutant tumors. The minor KRAS4A isoform is enriched in cancer stem-like cells, where it responds to hypoxia, while the major KRAS4B is induced by ER stress. KRAS4A splicing is controlled by the DCAF15/RBM39 pathway, and deletion of KRAS4A or pharmacological inhibition of RBM39 using Indisulam leads to inhibition of cancer stem cells. Our data identify existing clinical drugs that target KRAS4A splicing, and suggest that levels of the minor KRAS4A isoform in human tumors can be a biomarker of sensitivity to some existing cancer therapeutics.
PMCID:8277813
PMID: 34257283
ISSN: 2041-1723
CID: 4965302

NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane

Ahearn, Ian M; Court, Helen R; Siddiqui, Farid; Abankwa, Daniel; Philips, Mark R
Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane.
PMID: 33579760
ISSN: 2575-1077
CID: 4780552

ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer

Deng, Jiehui; Thennavan, Aatish; Dolgalev, Igor; Chen, Ting; Li, Jie; Marzio, Antonio; Poirier, John T; Peng, David; Bulatovic, Mirna; Mukhopadhyay, Subhadip; Silver, Heather; Papadopoulos, Eleni; Pyon, Val; Thakurdin, Cassandra; Han, Han; Li, Fei; Li, Shuai; Ding, Hailin; Hu, Hai; Pan, Yuanwang; Weerasekara, Vajira; Jiang, Baishan; Wang, Eric S; Ahearn, Ian; Philips, Mark; Papagiannakopoulos, Thales; Tsirigos, Aristotelis; Rothenberg, Eli; Gainor, Justin; Freeman, Gordon J; Rudin, Charles M; Gray, Nathanael S; Hammerman, Peter S; Pagano, Michele; Heymach, John V; Perou, Charles M; Bardeesy, Nabeel; Wong, Kwok-Kin
PMCID:8205437
PMID: 34142094
ISSN: 2662-1347
CID: 4917722

Breaking Tradition to Bridge Bench and Bedside: Accelerating the MD-PhD-Residency Pathway

Modrek, Aram S; Tanese, Naoko; Placantonakis, Dimitris G; Sulman, Erik P; Rivera, Rafael; Du, Kevin L; Gerber, Naamit K; David, Gregory; Chesler, Mitchell; Philips, Mark R; Cangiarella, Joan
PROBLEM/OBJECTIVE:Physician-scientists are individuals trained in both clinical practice and scientific research. Often, the goal of physician-scientist training is to address pressing questions in biomedical research. The established pathways to formally train such individuals are, mainly, MD-PhD programs and physician-scientist track residencies. Although graduates of these pathways are well equipped to be physician-scientists, numerous factors, including funding and length of training, discourage application to such programs and impede success rates. APPROACH/METHODS:To address some of the pressing challenges in training and retaining burgeoning physician-scientists, New York University Grossman School of Medicine formed the Accelerated MD-PhD-Residency Pathway in 2016. This pathway builds on the previously established accelerated three-year MD pathway to residency at the same institution. The Accelerated MD-PhD-Residency Pathway conditionally accepts MD-PhD trainees to a residency position at the same institution through the National Resident Matching Program. OUTCOMES/RESULTS:Since its inception, 2 students have joined the Accelerated MD-PhD-Residency Pathway, which provides protected research time in their chosen residency. The pathway reduces the time to earn an MD and PhD by one year and reduces the MD training phase to three years, reducing the cost and lowering socioeconomic barriers. Remaining at the same institution for residency allows for the growth of strong research collaborations and mentoring opportunities, which foster success. NEXT STEPS/UNASSIGNED:The authors and institutional leaders plan to increase the number of trainees that are accepted into the Accelerated MD-PhD-Residency Pathway and track the success of these students through residency and into practice to determine if the pathway is meeting its goal of increasing the number of practicing physician-scientists. The authors hope this model can serve as an example to leaders at other institutions who may wish to adopt this pathway for the training of their MD-PhD students.
PMID: 33464738
ISSN: 1938-808x
CID: 4760452

A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells

Chen, Xue; Yao, Haidong; Kashif, Muhammad; Revêchon, Gwladys; Eriksson, Maria; Hu, Jianjiang; Wang, Ting; Liu, Yiran; Tüksammel, Elin; Strömblad, Staffan; Ahearn, Ian M; Philips, Mark R; Wiel, Clotilde; Ibrahim, Mohamed X; Bergo, Martin O
A farnesylated and methylated form of prelamin A called progerin causes Hutchinson-Gilford progeria syndrome (HGPS). Inhibiting progerin methylation by inactivating the isoprenylcysteine carboxylmethyltransferase (ICMT) gene stimulates proliferation of HGPS cells and improves survival of Zmpste24-deficient mice. However, we don't know whether Icmt inactivation improves phenotypes in an authentic HGPS mouse model. Moreover, it is unknown whether pharmacologic targeting of ICMT would be tolerated by cells and produce similar cellular effects as genetic inactivation. Here, we show that knockout of Icmt improves survival of HGPS mice and restores vascular smooth muscle cell numbers in the aorta. We also synthesized a potent ICMT inhibitor called C75 and found that it delays senescence and stimulates proliferation of late-passage HGPS cells and Zmpste24-deficient mouse fibroblasts. Importantly, C75 did not influence proliferation of wild-type human cells or Zmpste24-deficient mouse cells lacking Icmt, indicating drug specificity. These results raise hopes that ICMT inhibitors could be useful for treating children with HGPS.
PMCID:7853716
PMID: 33526168
ISSN: 2050-084x
CID: 4798952

Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association

Zhou, Mo; Kuruvilla, Leena; Shi, Xiarong; Viviano, Stephen; Ahearn, Ian M; Amendola, Caroline R; Su, Wenjuan; Badri, Sana; Mahaffey, James; Fehrenbacher, Nicole; Skok, Jane; Schlessinger, Joseph; Turk, Benjamin E; Calderwood, David A; Philips, Mark R
Inhibiting membrane association of RAS has long been considered a rational approach to anticancer therapy, which led to the development of farnesyltransferase inhibitors (FTIs). However, FTIs proved ineffective against KRAS-driven tumors. To reveal alternative therapeutic strategies, we carried out a genome-wide CRISPR-Cas9 screen designed to identify genes required for KRAS4B membrane association. We identified five enzymes in the prenylation pathway and SAFB, a nuclear protein with both DNA and RNA binding domains. Silencing SAFB led to marked mislocalization of all RAS isoforms as well as RAP1A but not RAB7A, a pattern that phenocopied silencing FNTA, the prenyltransferase α subunit shared by farnesyltransferase and geranylgeranyltransferase type I. We found that SAFB promoted RAS membrane association by controlling FNTA expression. SAFB knockdown decreased GTP loading of RAS, abrogated alternative prenylation, and sensitized RAS-mutant cells to growth inhibition by FTI. Our work establishes the prenylation pathway as paramount in KRAS membrane association, reveals a regulator of prenyltransferase expression, and suggests that reduction in FNTA expression may enhance the efficacy of FTIs.
PMID: 33257571
ISSN: 1091-6490
CID: 4694022

Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer

Parker, Seth J; Amendola, Caroline R; Hollinshead, Kate E R; Yu, Qijia; Yamamoto, Keisuke; Encarnacion-Rosado, Joel; Rose, Rebecca E; LaRue, Madeleine M; Sohn, Albert S W; Biancur, Doug E; Paulo, Joao A; Gygi, Steven P; Jones, Drew R; Wang, Huamin; Philips, Mark R; Bar-Sagi, Dafna; Mancias, Joseph D; Kimmelman, Alec C
Pancreatic ductal adenocarcinoma (PDAC) evolves a complex microenvironment comprised of multiple cell types, including pancreatic stellate cells (PSCs). Previous studies have demonstrated that stromal supply of alanine, lipids, and nucleotides supports the metabolism, growth, and therapeutic resistance of PDAC. Here we demonstrate that alanine crosstalk between PSCs and PDAC is orchestrated by the utilization of specific transporters. PSCs utilize SLC1A4 and other transporter(s) to rapidly exchange and maintain environmental alanine concentrations. Moreover, PDAC cells upregulate SLC38A2 to supply their increased alanine demand. Cells lacking SLC38A2 fail to concentrate intracellular alanine and undergo a profound metabolic crisis resulting in markedly impaired tumor growth. Our results demonstrate that stromal-cancer metabolic niches can form through differential transporter expression, creating unique therapeutic opportunities to target metabolic demands of cancer.
PMID: 32341021
ISSN: 2159-8290
CID: 4412012