Try a new search

Format these results:

Searched for:

person:philim01

in-biosketch:true

Total Results:

136


Molecular basis for autoinhibition of RIAM regulated by FAK in integrin activation

Chang, Yu-Chung; Su, Wenjuan; Cho, Eun-Ah; Zhang, Hao; Huang, Qingqiu; Philips, Mark R; Wu, Jinhua
RAP1-interacting adapter molecule (RIAM) mediates RAP1-induced integrin activation. The RAS-association (RA) segment of the RA-PH module of RIAM interacts with GTP-bound RAP1 and phosphoinositol 4,5 bisphosphate but this interaction is inhibited by the N-terminal segment of RIAM. Here we report the structural basis for the autoinhibition of RIAM by an intramolecular interaction between the IN region (aa 27-93) and the RA-PH module. We solved the crystal structure of IN-RA-PH to a resolution of 2.4-Ã…. The structure reveals that the IN segment associates with the RA segment and thereby suppresses RIAM:RAP1 association. This autoinhibitory configuration of RIAM can be released by phosphorylation at Tyr45 in the IN segment. Specific inhibitors of focal adhesion kinase (FAK) blocked phosphorylation of Tyr45, inhibited stimulated translocation of RIAM to the plasma membrane, and inhibited integrin-mediated cell adhesion in a Tyr45-dependent fashion. Our results reveal an unusual regulatory mechanism in small GTPase signaling by which the effector molecule is autoinhibited for GTPase interaction, and a modality of integrin activation at the level of RIAM through a FAK-mediated feedforward mechanism that involves reversal of autoinhibition by a tyrosine kinase associated with integrin signaling.
PMID: 30733287
ISSN: 1091-6490
CID: 3632412

Where no Ras has gone before: VPS35 steers N-Ras through the cytosol

Zhou, Mo; Philips, Mark R
Ras is the best-studied member of the superfamily of small GTPases because of its role in cancer. Ras proteins transmit signals for proliferation, differentiation and survival. Three RAS genes encode 4 isoforms. All Ras isoforms have long been considered membrane bound, a localization required for function. Our recent study revealed that N-Ras differs from all other isoforms in being largely cytosolic even following modification with a prenyl lipid. Endogenous, cytosolic N-Ras chromatographed in both high and low molecular weight pools, a pattern that required prenylation, suggesting prenyl-dependent interaction with other proteins. VPS35, a coat protein of the retromer, was shown to interact with prenylated N-Ras in the cytosol. Silencing VPS35 results in partial N-Ras mislocalization on vesicular and tubulovesicular structures, reduced GTP-loading of Ras proteins, and inhibited proliferation and MAPK signaling in an oncogenic N-Ras-driven tumor cell line. Our data revealed a novel regulator of N-Ras trafficking and signaling.
PMID: 28129035
ISSN: 2154-1256
CID: 2418782

RADIL regulates RAS downstream signaling [Meeting Abstract]

Choi, Byeong Hyeok; Kou, Ziyue; Philips, Mark R.; Dai, Wei
ISI:000488129904313
ISSN: 0008-5472
CID: 4135772

K-Ras lysine-42 is crucial for its signaling, cell migration and invasion

Choi, Byeong Hyeok; Philips, Mark R; Chen, Yuan; Lu, Luo; Dai, Wei
Ras proteins participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. We have previously reported that Ras proteins are modified by sumoylation and that lysine-42 (K42) plays an important role in mediating the modification.  In the current study, we further investigated the role of K42 in regulating cellular activities of K-Ras. Inducible expression of K-RasV12 led to the activation of downstream components including c-RAF, MEK1, and ERKs whereas expression of K-RasV12/R42 mutant compromised the activation of the RAF/MEK/ERK signaling axis. Expression of K-RasV12/R42 also led to reduced phosphorylation of several other protein kinases including JNK, Chk2, and FAK. Significantly, K-RasV12/R42 expression inhibited cellular migration and invasion in vitro in multiple cell lines including transformed pancreatic cells. Given K-Ras plays a crucial role in mediating oncogenesis in pancreas, we treated transformed pancreatic cells of both BxPC-3 and MiaPaCa-2 with 2-D08, an SUMO E2 inhibitor. Treatment with the compound inhibited cell migration in a concentration-dependent manner, which was correlated with a reduced level of K-Ras sumoylation. Moreover, 2-D08 suppressed expression of ZEB1 (a mesenchymal cell marker) with concomitant induction of ZO-1 (an epithelial cell marker). Combined, our studies strongly suggest that post-translational modification(s) including sumoylation mediated by K42 plays a crucial role in K-Ras activities in vivo.
PMID: 30228186
ISSN: 1083-351x
CID: 3301122

Posttranslational Modifications of RAS Proteins

Ahearn, Ian; Zhou, Mo; Philips, Mark R
The three human RAS genes encode four proteins that play central roles in oncogenesis by acting as binary molecular switches that regulate signaling pathways for growth and differentiation. Each is subject to a set of posttranslational modifications (PTMs) that modify their activity or are required for membrane targeting. The enzymes that catalyze the various PTMs are potential targets for anti-RAS drug discovery. The PTMs of RAS proteins are the focus of this review.
PMCID:6035883
PMID: 29311131
ISSN: 2157-1422
CID: 2906532

Heterogeneity and mutation in KRAS and associated oncogenes: evaluating the potential for the evolution of resistance to targeting of KRAS G12C

Cannataro, Vincent L; Gaffney, Stephen G; Stender, Carly; Zhao, Zi-Ming; Philips, Mark; Greenstein, Andrew E; Townsend, Jeffrey P
Activating mutations in RAS genes are associated with approximately 20% of all human cancers. New targeted therapies show preclinical promise in inhibiting the KRAS G12C variant. However, concerns exist regarding the effectiveness of such therapies in vivo given the possibilities of existing intratumor heterogeneity or de novo mutation leading to treatment resistance. We performed deep sequencing of 27 KRAS G12-positive lung tumors to determine the prevalence of other oncogenic mutations within KRAS or within commonly mutated downstream genes that could confer resistance at the time of treatment. We also passaged patient-derived xenografts to assess the potential for novel KRAS mutation to arise during subsequent tumor evolution. Furthermore, we estimate the de novo mutation rate in KRAS position 12 and in genes downstream of KRAS. Finally, we present an approach for estimation of the selection intensity for these point mutations that explains their high prevalence in tumors. We find no evidence of heterogeneity that may compromise KRAS G12C targeted therapy within sequenced lung tumors or passaged xenografts. We find that mutations that confer resistance are even less likely to occur downstream of KRAS than to occur within KRAS. Our approach predicts that BRAF V600E would provide the highest fitness advantage for de novo-resistant subclones. Overall, our findings suggest that resistance to targeted therapy of KRAS G12C-positive tumors is unlikely to be present at the time of treatment and, among the de novo mutations likely to confer resistance, mutations in BRAF, a gene with targeted inhibitors presently available, result in subclones with the highest fitness advantage.
PMID: 29453361
ISSN: 1476-5594
CID: 2958452

RAS GTPases are modified by SUMOylation

Choi, Byeong Hyeok; Chen, Changyan; Philips, Mark; Dai, Wei
RAS proteins are GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, differentiation, and autophagy. Mutations or deregulated activities of RAS are frequently the driving force for oncogenic transformation and tumorigenesis. Given the important roles of the small ubiquitin-related modifier (SUMO) pathway in controlling the stability, activity, or subcellular localization of key cellular regulators, we investigated here whether RAS proteins are posttranslationally modified (i.e. SUMOylated) by the SUMO pathway. We observed that all three RAS protein isoforms (HRAS, KRAS, and NRAS) were modified by the SUMO3 protein. SUMOylation of KRAS protein, either endogenous or ectopically expressed, was observed in multiple cell lines. The SUMO3 modification of KRAS proteins could be removed by SUMO1/sentrin-specific peptidase 1 (SENP1) and SENP2, but not by SENP6, indicating that RAS SUMOylation is a reversible process. A conserved residue in RAS, Lys-42, was a site that mediates SUMOylation. Results from biochemical and molecular studies indicated that the SUMO-E3 ligase PIASγ specifically interacts with RAS and promotes its SUMOylation. Moreover, SUMOylation of RAS appeared to be associated with its activation. In summary, our study reveals a new posttranslational modification for RAS proteins. Since we found that HRAS, KRAS, and NRAS can all be SUMOylated, we propose that SUMOylation might represent a mechanism by which RAS activities are controlled.
PMCID:5796985
PMID: 29435114
ISSN: 1949-2553
CID: 2953652

Regulation of NOTCH signaling by RAB7 and RAB8 requires carboxyl methylation by ICMT

Court, Helen; Ahearn, Ian M; Amoyel, Marc; Bach, Erika A; Philips, Mark R
Isoprenylcysteine carboxyl methyltransferase (ICMT) methylesterifies C-terminal prenylcysteine residues of CaaX proteins and some RAB GTPases. Deficiency of either ICMT or NOTCH1 accelerates pancreatic neoplasia in Pdx1-Cre;LSL-KrasG12D mice, suggesting that ICMT is required for NOTCH signaling. We used Drosophila melanogaster wing vein and scutellar bristle development to screen Rab proteins predicted to be substrates for ICMT (ste14 in flies). We identified Rab7 and Rab8 as ICMT substrates that when silenced phenocopy ste14 deficiency. ICMT, RAB7, and RAB8 were all required for efficient NOTCH1 signaling in mammalian cells. Overexpression of RAB8 rescued NOTCH activation after ICMT knockdown both in U2OS cells expressing NOTCH1 and in fly wing vein development. ICMT deficiency induced mislocalization of GFP-RAB7 and GFP-RAB8 from endomembrane to cytosol, enhanced binding to RABGDI, and decreased GTP loading of RAB7 and RAB8. Deficiency of ICMT, RAB7, or RAB8 led to mislocalization and diminished processing of NOTCH1-GFP. Thus, NOTCH signaling requires ICMT in part because it requires methylated RAB7 and RAB8.
PMCID:5716267
PMID: 29051265
ISSN: 1540-8140
CID: 2743032

Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies

Waters, Andrew M; Ozkan-Dagliyan, Irem; Vaseva, Angelina V; Fer, Nicole; Strathern, Leslie A; Hobbs, G Aaron; Tessier-Cloutier, Basile; Gillette, William K; Bagni, Rachel; Whiteley, Gordon R; Hartley, James L; McCormick, Frank; Cox, Adrienne D; Houghton, Peter J; Huntsman, David G; Philips, Mark R; Der, Channing J
There is intense interest in developing therapeutic strategies for RAS proteins, the most frequently mutated oncoprotein family in cancer. Development of effective anti-RAS therapies will be aided by the greater appreciation of RAS isoform-specific differences in signaling events that support neoplastic cell growth. However, critical issues that require resolution to facilitate the success of these efforts remain. In particular, the use of well-validated anti-RAS antibodies is essential for accurate interpretation of experimental data. We evaluated 22 commercially available anti-RAS antibodies with a set of distinct reagents and cell lines for their specificity and selectivity in recognizing the intended RAS isoforms and mutants. Reliability varied substantially. For example, we found that some pan- or isoform-selective anti-RAS antibodies did not adequately recognize their intended target or showed greater selectivity for another; some were valid for detecting G12D and G12V mutant RAS proteins in Western blotting, but none were valid for immunofluorescence or immunohistochemical analyses; and some antibodies recognized nonspecific bands in lysates from "Rasless" cells expressing the oncoprotein BRAFV600E Using our validated antibodies, we identified RAS isoform-specific siRNAs and shRNAs. Our results may help to ensure the accurate interpretation of future RAS studies.
PMCID:5812265
PMID: 28951536
ISSN: 1937-9145
CID: 2717622

Nitrogen Cavitation and Differential Centrifugation Allows for Monitoring the Distribution of Peripheral Membrane Proteins in Cultured Cells

Zhou, Mo; Philips, Mark R
Cultured cells are useful for studying the subcellular distribution of proteins, including peripheral membrane proteins. Genetically encoded fluorescently tagged proteins have revolutionized the study of subcellular protein distribution. However, it is difficult to quantify the distribution with fluorescent microscopy, especially when proteins are partially cytosolic. Moreover, it is often important to study endogenous proteins. Biochemical assays such as immunoblots remain the gold standard for quantification of protein distribution after subcellular fractionation. Although there are commercial kits that aim to isolate cytosolic or certain membrane fractions, most of these kits are based on extraction with detergents, which may be unsuitable for studying peripheral membrane proteins that are easily extracted from membranes. Here we present a detergent-free protocol for cellular homogenization by nitrogen cavitation and subsequent separation of cytosolic and membrane-bound proteins by ultracentrifugation. We confirm the separation of subcellular organelles in soluble and pellet fractions across different cell types, and compare protein extraction among several common non-detergent-based mechanical homogenization methods. Among several advantages of nitrogen cavitation is the superior efficiency of cellular disruption with minimal physical and chemical damage to delicate organelles. Combined with ultracentrifugation, nitrogen cavitation is an excellent method to examine the shift of peripheral membrane proteins between cytosolic and membrane fractions.
PMID: 28872138
ISSN: 1940-087x
CID: 2687722