Try a new search

Format these results:

Searched for:

person:raabev01 or eckhab01 or mullim04 or weises06 or shopsb01

active:yes

exclude-minors:true

Total Results:

294


Capsular Polysaccharide Is Essential for the Virulence of the Antimicrobial-Resistant Pathogen Enterobacter hormaechei

St John, Amelia; Perault, Andrew I; Giacometti, Sabrina I; Sommerfield, Alexis G; DuMont, Ashley L; Lacey, Keenan A; Zheng, Xuhui; Sproch, Julia; Petzold, Chris; Dancel-Manning, Kristen; Gonzalez, Sandra; Annavajhala, Medini; Beckford, Colleen; Zeitouni, Nathalie; Liang, Feng-Xia; van Bakel, Harm; Shopsin, Bo; Uhlemann, Anne-Catrin; Pironti, Alejandro; Torres, Victor J
Nosocomial infections caused by multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) pathogens are on the rise. However, the virulence strategies employed by these pathogens remain elusive. Here, we study the interaction of ECC clinical isolates with human serum to define how this pathogen evades the antimicrobial action of complement, one of the first lines of host-mediated immune defense. We identified a small number of serum-sensitive strains, including Enterobacter hormaechei strain NR3055, which we exploited for the in vitro selection of serum-resistant clones. Comparative genomics between the serum-sensitive NR3055 strain and the isolated serum-resistant clones revealed a premature stop codon in the wzy gene of the capsular polysaccharide biosynthesis locus of NR3055. The complementation of wzy conferred serum resistance to NR3055, prevented the deposition of complement proteins on the bacterial surface, inhibited phagocytosis by human neutrophils, and rendered the bacteria virulent in a mouse model of peritonitis. Mice exposed to a nonlethal dose of encapsulated NR3055 were protected from subsequent lethal infections by encapsulated NR3055, whereas mice that were previously exposed to unencapsulated NR3055 succumbed to infection. Thus, capsule is a key immune evasion determinant for E. hormaechei, and it is a potential target for prophylactics and therapeutics to combat these increasingly MDR human pathogens. IMPORTANCE Infections caused by antimicrobial resistant bacteria are of increasing concern, especially those due to carbapenem-resistant Enterobacteriaceae pathogens. Included in this group are species of the Enterobacter cloacae complex, regarding which there is a paucity of knowledge on the infection biology of the pathogens, despite their clinical relevance. In this study, we combine techniques in comparative genomics, bacterial genetics, and diverse models of infection to establish capsule as an important mechanism of Enterobacter pathogens to resist the antibacterial activity of serum, a first line of host defense against bacterial infections. We also show that immune memory targeting the Enterobacter capsule protects against lethal infection. The further characterization of Enterobacter infection biology and the immune response to infection are needed for the development of therapies and preventative interventions targeting these highly antibiotic resistant pathogens.
PMID: 36779722
ISSN: 2150-7511
CID: 5421192

MRSA lineage USA300 isolated from bloodstream infections exhibit altered virulence regulation

Dyzenhaus, Sophie; Sullivan, Mitchell J; Alburquerque, Bremy; Boff, Daiane; van de Guchte, Adriana; Chung, Marilyn; Fulmer, Yi; Copin, Richard; Ilmain, Juliana K; O'Keefe, Anna; Altman, Deena R; Stubbe, François-Xavier; Podkowik, Magdalena; Dupper, Amy C; Shopsin, Bo; van Bakel, Harm; Torres, Victor J
The epidemic community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 lineage has recently become a leading cause of hospital-associated bloodstream infections (BSIs). Here, we leveraged this recent introduction into hospitals and the limited genetic variation across USA300 isolates to identify mutations that contribute to its success in a new environment. We found that USA300 BSI isolates exhibit altered virulence regulation. Using comparative genomics to delineate the genes involved in this phenotype, we discovered repeated and independent mutations in the transcriptional regulator sarZ. Mutations in sarZ resulted in increased virulence of USA300 BSI isolates in a murine model of BSI. The sarZ mutations derepressed the expression and production of the surface protein ClfB, which was critical for the pathogenesis of USA300 BSI isolates. Altogether, these findings highlight ongoing evolution of a major MRSA lineage and suggest USA300 strains can optimize their fitness through altered regulation of virulence.
PMID: 36681080
ISSN: 1934-6069
CID: 5426472

Multimodal characterization of antigen-specific CD8 + T cells across SARS-CoV-2 vaccination and infection

Zhang, Bingjie; Upadhyay, Rabi; Hao, Yuhan; Samanovic, Marie I; Herati, Ramin S; Blair, John; Axelrad, Jordan; Mulligan, Mark J; Littman, Dan R; Satija, Rahul
The human immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we utilize multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after BNT162b2 immunization. Our data reveal distinct subpopulations of CD8 + T cells which reliably appear 28 days after prime vaccination (7 days post boost). Using a suite of cross-modality integration tools, we define their transcriptome, accessible chromatin landscape, and immunophenotype, and identify unique biomarkers within each modality. By leveraging DNA-oligo-tagged peptide-MHC multimers and T cell receptor sequencing, we demonstrate that this vaccine-induced population is SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we also identify these CD8 + populations in scRNA-seq datasets from COVID-19 patients and find that their relative frequency and differentiation outcomes are predictive of subsequent clinical outcomes. Our work contributes to our understanding of T cell immunity, and highlights the potential for integrative and multimodal analysis to characterize rare cell populations.
PMCID:9900816
PMID: 36747786
ISSN: 2692-8205
CID: 5522692

Identification of immunodominant T cell epitopes induced by natural Zika virus infection

Eickhoff, Christopher S; Meza, Krystal A; Terry, Frances E; Colbert, Chase G; Blazevic, Azra; Gutiérrez, Andres H; Stone, E Taylor; Brien, James D; Pinto, Amelia K; El Sahly, Hana M; Mulligan, Mark J; Rouphael, Nadine; Alcaide, Maria L; Tomashek, Kay M; Focht, Chris; Martin, William D; Moise, Leonard; De Groot, Anne S; Hoft, Daniel F
Zika virus (ZIKV) is a flavivirus primarily transmitted by Aedes species mosquitoes, first discovered in Africa in 1947, that disseminated through Southeast Asia and the Pacific Islands in the 2000s. The first ZIKV infections in the Americas were identified in 2014, and infections exploded through populations in Brazil and other countries in 2015/16. ZIKV infection during pregnancy can cause severe brain and eye defects in offspring, and infection in adults has been associated with higher risks of Guillain-Barré syndrome. We initiated a study to describe the natural history of Zika (the disease) and the immune response to infection, for which some results have been reported. In this paper, we identify ZIKV-specific CD4+ and CD8+ T cell epitopes that induce responses during infection. Two screening approaches were utilized: an untargeted approach with overlapping peptide arrays spanning the entire viral genome, and a targeted approach utilizing peptides predicted to bind human MHC molecules. Immunoinformatic tools were used to identify conserved MHC class I supertype binders and promiscuous class II binding peptide clusters predicted to bind 9 common class II alleles. T cell responses were evaluated in overnight IFN-γ ELISPOT assays. We found that MHC supertype binding predictions outperformed the bulk overlapping peptide approach. Diverse CD4+ T cell responses were observed in most ZIKV-infected participants, while responses to CD8+ T cell epitopes were more limited. Most individuals developed a robust T cell response against epitopes restricted to a single MHC class I supertype and only a single or few CD8+ T cell epitopes overall, suggesting a strong immunodominance phenomenon. Noteworthy is that many epitopes were commonly immunodominant across persons expressing the same class I supertype. Nearly all of the identified epitopes are unique to ZIKV and are not present in Dengue viruses. Collectively, we identified 31 immunogenic peptides restricted by the 6 major class I supertypes and 27 promiscuous class II epitopes. These sequences are highly relevant for design of T cell-targeted ZIKV vaccines and monitoring T cell responses to Zika virus infection and vaccination.
PMCID:10497216
PMID: 37705976
ISSN: 1664-3224
CID: 5593732

Low incidence and transient elevation of autoantibodies post mRNA COVID-19 vaccination in inflammatory arthritis

Blank, Rebecca B; Haberman, Rebecca H; Qian, Kun; Samanovic, Marie; Castillo, Rochelle; Jimenez Hernandez, Anthony; Vasudevapillai Girija, Parvathy; Catron, Sydney; Uddin, Zakwan; Rackoff, Paula; Solomon, Gary; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya; Mulligan, Mark J; Hu, Jiyuan; Scher, Jose U
OBJECTIVES/OBJECTIVE:Autoantibody seroconversion has been extensively studied in the context of COVID-19 infection but data regarding post-vaccination autoantibody production is lacking. Here we aimed to determine the incidence of common autoantibody formation following mRNA COVID-19 vaccines in patients with inflammatory arthritis (IA) and in healthy controls. METHODS:Autoantibody seroconversion was measured by serum ELISA in a longitudinal cohort of IA participants and healthy controls before and after COVID-19 mRNA-based immunization. RESULTS:Overall, there was a significantly lower incidence of ANA seroconversion in participants who did not contract COVID-19 prior to vaccination compared with those who been previously infected (7.4% vs 24.1%, p= 0.014). Incidence of de novo anti-cyclic citrullinated protein (CCP) seroconversion in all participants was low at 4.9%. Autoantibody levels were typically of low titer, transient, and not associated with increase in IA flares. CONCLUSIONS:In both health and inflammatory arthritis, the risk of autoantibody seroconversion is lower following mRNA-based immunization than following natural SARS-CoV-2 infection. Importantly, seroconversion does not correlate with self-reported IA disease flare risk, further supporting the encouragement of mRNA-based COVID-19 immunization in the IA population.
PMID: 35640110
ISSN: 1462-0332
CID: 5235902

Vaccine-Acquired SARS-CoV-2 Immunity versus Infection-Acquired Immunity: A Comparison of Three COVID-19 Vaccines

Samanovic, Marie I; Oom, Aaron L; Cornelius, Amber R; Gray-Gaillard, Sophie L; Karmacharya, Trishala; Tuen, Michael; Wilson, Jimmy P; Tasissa, Meron F; Goins, Shelby; Herati, Ramin Sedaghat; Mulligan, Mark J
Around the world, rollout of COVID-19 vaccines has been used as a strategy to end COVID-19-related restrictions and the pandemic. Several COVID-19 vaccine platforms have successfully protected against severe SARS-CoV-2 infection and subsequent deaths. Here, we compared humoral and cellular immunity in response to either infection or vaccination. We examined SARS-CoV-2 spike-specific immune responses from Pfizer/BioNTech BNT162b2, Moderna mRNA-1273, Janssen Ad26.COV2.S, and SARS-CoV-2 infection approximately 4 months post-exposure or vaccination. We found that these three vaccines all generate relatively similar immune responses and elicit a stronger response than natural infection. However, antibody responses to recent viral variants are diminished across all groups. The similarity of immune responses from the three vaccines studied here is an important finding in maximizing global protection as vaccination campaigns continue.
PMCID:9782527
PMID: 36560562
ISSN: 2076-393x
CID: 5522682

Cost of providing co-located hepatitis C treatment at a syringe service program exceeds potential reimbursement: Results from a clinical trial

Kapadia, Sashi N; Eckhardt, Benjamin J; Leff, Jared A; Fong, Chunki; Mateu-Gelabert, Pedro; Marks, Kristen M; Aponte-Melendez, Yesenia; Schackman, Bruce R
ORIGINAL:0016357
ISSN: 2772-7246
CID: 5374982

Dose-Response of a Norovirus GII.2 Controlled Human Challenge Model Inoculum

Rouphael, Nadine; Beck, Allison; Kirby, Amy E; Liu, Pengbo; Natrajan, Muktha S; Lai, Lilin; Phadke, Varun; Winston, Juton; Raabe, Vanessa; Collins, Matthew H; Girmay, Tigisty; Alvarez, Alicarmen; Beydoun, Nour; Karmali, Vinit; Altieri-Rivera, Joanne; Lindesmith, Lisa C; Anderson, Evan J; Wang, Yuke; El-Khorazaty, Jill; Petrie, Carey; Baric, Ralph S; Baqar, Shahida; Moe, Christine L; Mulligan, Mark J
BACKGROUND:Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS:Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain Virus (SMV) GII.2 norovirus inoculum (1.2x10 4 to 1.2x10 7 genomic equivalent copies [GEC]; n=38) or placebo ( n=6). Illness was defined as diarrhea and/or vomiting post challenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV IgG seroconversion). RESULTS:The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between pre-challenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary IgA and infection. The ID50 was 5.1×10 5 GEC. CONCLUSIONS:High rates of infection and illness were observed in both secretor-positive and negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics.
PMID: 35137154
ISSN: 1537-6613
CID: 5176072

Rapid Treatment Initiation for Hepatitis C Virus Infection: Potential Benefits, Current Limitations, and Real-World Examples

Finbråten, Ane Kristine; Eckhardt, Benjamin J.; Kapadia, Shashi N.; Marks, Kristen M.
The science for rapid treatment initiation for hepatitis C virus infection is in place. Easy and quick diagnostic tools can provide results within an hour. Necessary assessment before treatment initiation is now minimal and manageable. Treatment has a low dose burden and high tolerability. Although the critical components for rapid treatment are accessible, certain barriers prevent wider utilization, including insurance restrictions and delays in the health care system. Rapid treatment initiation can improve linkage to care by addressing many barriers to care at once, which is essential for achieving a care plateau. Young people with low health care engagement, finitely engaged people (eg, those who are incarcerated), or people with high-risk injection drug behavior, and thereby high risk for transmission of hepatitis C virus, can benefit the most from rapid treatment. Several innovative care models have demonstrated the potential for rapid treatment initiation by overcoming barriers to care with rapid diagnostic testing, decentralization, and simplification. Expanding these models is likely to be an important component for the elimination of hepatitis C virus infection. This article reviews the current motivation for rapid treatment initiation for hepatitis C virus infection and published literature describing rapid treatment initiation models.
SCOPUS:85165677368
ISSN: 1554-7914
CID: 5619882

Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia

Bernard-Raichon, Lucie; Venzon, Mericien; Klein, Jon; Axelrad, Jordan E; Zhang, Chenzhen; Sullivan, Alexis P; Hussey, Grant A; Casanovas-Massana, Arnau; Noval, Maria G; Valero-Jimenez, Ana M; Gago, Juan; Putzel, Gregory; Pironti, Alejandro; Wilder, Evan; Thorpe, Lorna E; Littman, Dan R; Dittmann, Meike; Stapleford, Kenneth A; Shopsin, Bo; Torres, Victor J; Ko, Albert I; Iwasaki, Akiko; Cadwell, Ken; Schluter, Jonas
Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
PMID: 36319618
ISSN: 2041-1723
CID: 5358262